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ABSTRACT. In Batch Gradient Descent, the most efficient constant learning rate should be 1
L

, and L is the 

Lipschitz constant. In “Learning the Learning Rate”(Xiaoxia Wu et al., 2018), some of their algorithms seem t-o 
be inefficient. This paper is gonna to further improve their method. The searching-L algorithm is raised in the 
following passage, which limits the WNGrad-Batch’s complexity from square to linear by gradually 

approximating our learning rate to 1
L

. In stochastic gradient descent, we find that b-y using the learning rate 

kn , which conforms the updating rule: 1
2

k
cn

k
= , can have a more stable upper bound of the time complexity, 

which won’t have a parameter γ. 
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1. Introduction 

Recall that gradient descent is a process to find the minimum of the loss function f(x)by iteratively move x 
towards the convergent point – the lowest place in the functional image: xk+1←xk−ηk∇f (x).Gradient 
descent enjoys great convergence if the learning rate ηj fits the smoothness of the function.If it is too small, it 
takes forever for x to reach the target, and if it is too large, x will oscillate or even diverge. Linear search 
method works well since gradients f(x) are observed exactly in “Batch”, but it becomes less effective when 
comes to stochastic settings, where only noisy gradients are given. In SGD, we observe a stochastic gradient gk, 
satisfying E(gk) =∇f (x) and E||gk||2≤G2. SGD is a optimum algorithm to choose in deep learning, and it 
can eliminate the time-consuming problem in “Batch gradient descent” if the data set is too large. 

In stochastic settings, there are several different guidelines of setting learning rates (η1... ηn). The classical 
theory (Robbins and Monro, 1951) says that if the learning rate chosen satisfies 

∑
∞

=

∞=
1k

kα   and  ∞<∑
∞

=1

2

k
kα                 (1) 

and the loss function is smooth enough, then limk→∞E[ǁf‘(x)ǁ2]=0.If the loss function is also strongly 
convex, then the SGD-update xk+1←xk−ηk gk will converge in expectation to the minimum. 

Therefore machine learning’s essential question is how to find the learning rate that suits the component 
function fi. The family of adaptive gradient (AdaGrad) algorithms (Duchi et al., 2011) showed an great 
improvement by dynamically updating his learning rates and reaching a convergence performance over 
standard stochastic gradient descent with sparse data and informative parameters. This method was then 
applied widely in language processing. But how to find a efficient learning rate remains a question. According 
to some researches on adaptive learning rate (Needell et al., 2014; Zhao and Zhang, 2015), Lipschitz constant 
seems to be the symbol to decide how to modify the current rate: increase when it is smaller than the constant 
and decrease when it is larger. However, Lipschitz constant remains unknown along the way, which means it 
should also be previously learned just as the learning rate. In WNGrad (Xiaoxia Wu et al., 2018), a method that 
do not need to know constant L in advance is advocated, which is a great advance. But in their paper, the 
complexity of the steps needed in “WNGrad-Batch setting” is 
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It is absolutely not a very tight bound since it contains the square term, and this paper aims to improve their 
“Batch” algorithm to linear complexity. Also, there is a γ in their SGD method, and we gonna to prove it 
unnecessary with a clearly determined learning rate kη . 

2. Searching “l” – Batch Set 

Consider a smooth function f that satisfies Lipschitz continuity 1( )
L

f C∈ : for any , dx y R∈ , 

ǁ∇f(x)−∇f(y)ǁ≤L ǁx−yǁ               (2) 

and the optimum problem 

min ( ),f x                    (3) 

the standard gradient update should be    1 ( )i i ix x f xη+ ← − ∇             (4) 

The convergent results are classical ((Nesterov, 1998), (1.2)). 

For initialization, sampling 2R ≥  points 1u , 2u , ... Ru , and 1( )f u∇  1( )u  (u1), 1( )f u∇ , ..., 
( )Rf u∇ : 

b =max ǁ f(u j ) − f(u k) ǁ =δL,δ∈(0,1]                  (5) 

Let 1
b

be the learning rate. 

Lemma1 Suppose that f C1 L∈   and that *f > −∞ . Consider gradient descent with constant learning 
rate 0η > . If Lη δ=  and δ ≤ 1, then it takes 

1

2

2 ( ( ) *)T= L f x f
sδ
−                  (6) 

to reach 

  
1:

min ( ) jj T
f x s

=
∇ ≤                  (7) 

Then consider the following modified gradient descent scheme: 

Algorithm 1 Searching L 

Input: 

0s > Initialize 1x 1, 0, 1,   1dR b j k∈ > ←  

while 1 do 

1j j← +  

1 1
1 ( )j j j
k

x x x
b− −← − ∇  

if ∇ ǁ f(xj) ǁ2< s then 

return 
kb
1

 
break 

end if 
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end if 

end while 

Theorem 1  Suppose all the f(x) are positive. Consider the Searching L algorithm when 1 ,b Lδ δ=  

(0,1]∈ and the best fixed learning rate 1
L

, it takes 

          12 (2 ) ( )L f xT
s
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                       (8) 

which is better than the square item of WNGrad 

Proof 2.1 Since ( )f x are all positive 1( 2 , )k
kb L k Zδ−= ∈ , Suppose  is returned *

1 1( ( ) ( )f x f f x− < then the 
total steps is equal to 
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3. Determined Learning Rate in Stochastic Gradient Descent 

We now consider the learning rate in stochastic gradient descent without the parameter γ. We can just let 
learning rate kn equal to 1/2/c k  ,and the learning rate will be changed with the times of iteration k . 

Algorithm 2 Learning Rate with 1/2/c k  

Input: s >0, c >0,initialize 1,    1dR b cj∈ ←  

repeat 

1
1

1

 1

( 1)

gj
j j

j

j
x x

ib b
i

−
−

−

← +

← − −

−
←

 

until ( )jf x S<  

Consider the general optimal problem 

min ( )f x  

x 

From stochastic gradient information.Instead of using full gradients ( )kf x∇  ,we observe stochastic 

gradients d
kg R∈ , satisfying E(gk) = ∇f (xk). Let

1

1 k
ik

x x
k =

= ∑   



Frontiers in Educational Research 
ISSN 2522-6398 Vol. 3, Issue 4: 59-62, DOI: 10.25236/FER.2020.030414 

Published by Francis Academic Press, UK 

- 62 - 

Theorem 3.1 Suppose f(x) is convex. Suppose, that, independent of xk, 

E(||gk ||
2
) ≤ tt 

and E||xi− x∗ ||
2 ≤ D2. Then with initialization 1 1b g≥ , 

1
12 2 2* * 2
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Proof of Theorem 3.1: First note that 1 1/ 2
kb k

k cη
= = ,then 
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So, 
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12( , )k k k k k k kx x g b x x b x x g+− = − − − +  

Thus, 

2* * *
1

1 1
2 ( , ) 2 ( , )

k k

k k k k k k
i i

x x g x x g b x x+
= =

− ≤ − + −∑ ∑  

From Jensens inequality, and recalling that by convexity conclude ( ) * ( *, ( )) ( *, )k k k k kf x f x x f x E x x g− ≤ − ∇ = − , 

we conclude 
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