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Abstract: In this paper, decision tree, ANOVA, least squares and other modeling algorithms are used to 
study the core loss of magnetic components. For the excitation waveform classification, the decision tree 
model is used to realize high-precision classification based on the extracted waveform features; in the 
correction of the Steinmetz equation, the temperature factor is added to construct three kinds of 
correction equations, and the optimal correction equations are selected by the least squares method to 
improve the loss prediction accuracy; the one-factor and two-factor ANOVA models are used to 
investigate the effects of temperature, excitation waveform, and core material on the magnetic core loss, 
and the independent and synergistic effects of each factor are clarified. The effects of temperature, 
excitation waveform and core material on core loss are investigated using one-factor and two-factor 
ANOVA models, and the independent and synergistic effects of each factor are clarified. The research 
results provide a basis for the in-depth understanding of the core loss mechanism, and also lay a 
foundation for the design and optimization of magnetic components, which will help to improve the 
performance of power converters. 
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1. Introduction 

In power conversion systems, the core loss of magnetic components has a significant impact on 
system performance [1]. However, the traditional core loss models are difficult to meet the practical 
needs because they cannot accurately consider the effects of multiple complex factors. In this paper, we 
aim to fill this gap and conduct an in-depth study using various advanced modeling algorithms. The 
decision tree algorithm is used to classify the excitation waveforms and mine the waveform features to 
achieve accurate identification; the least squares method is widely used in solving the equation 
parameters to provide strong support for model optimization; and the ANOVA model is used to analyze 
the influence mechanism of various factors on the core loss. Through these modeling algorithms, the core 
loss characteristics are explored comprehensively and deeply to provide a scientific basis for the optimal 
design of magnetic components and to promote the development of power electronics technology in the 
direction of high efficiency and energy saving, which is of great theoretical and practical significance in 
the research of power electronics field. 

2. Excitation waveform classification based on decision tree modeling 

First, an image of the flux density of each waveform over time is plotted based on the flux density 
values in one cycle. The features of each image are observed, and the feature variables of different 
waveforms are extracted from them. Next, the extracted feature variables are used to build a classification 
model on the training set, and the data in the validation set are substituted into the classification model, 
and the evaluation indexes such as accuracy, precision as well as confusion matrix are used to judge the 
effectiveness of the model. The data in the test set are then substituted into the classification model to 
predict the type of waveform to which each set of data belongs. Finally, the flux density over time images 
of some data in the test set are drawn, and the reasonableness of the model is checked against the images 
and compared with the prediction results.  
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Step 1: Draw an image of the flux density of each waveform over time, as shown in Figures 1, 2 and 
3 below: 

 
Figure 1. Sinusoidal wave flux density over time 

image 

 
Figure 2. Triangular wave flux density image 

over time 

 
Figure 3. Trapezoidal wave flux density image over time 

In the above image, the horizontal coordinate indicates the nth sampling point, and the vertical 
coordinate indicates the magnetic flux density corresponding to each sampling point. Based on the above 
image, the shape characteristics of various waveforms are analyzed. Figure 1 demonstrates the 
superposition of multiple sinusoidal waves with the following characteristics: the lines in the image show 
the periodic characteristics of the sinusoidal waveforms, the regularity of the shapes of the peaks and 
valleys is revealed, and in general the waveforms have symmetry in the horizontal direction, with 
symmetrical distributions of the upper and lower peaks and valleys. It indicates that the magnetic flux 
density changes periodically with time in a sinusoidal waveform. Figure 2 demonstrates a series of 
triangular waveforms with the following characteristics: the lines in the image have sharp waveforms, 
the peaks and valleys show clear linear changes, and the magnetic flux density rises and falls in a linear 
manner with time, with a gradual transition at the peak, showing a typical triangular waveform shape 
with continuous, equal-amplitude rising and falling phases. Figure 3 illustrates the superposition of 
multiple trapezoidal waves with the following characteristics: the lines in the image are relatively smooth, 
the top and bottom of the waveform are flat and exhibit some lag time, and the rising and falling portions 
are slightly steeper but not as sharp as a triangular wave. The magnetic flux density is also distributed in 
a linear manner of rise or fall with time, but there will be a section at the top and bottom that changes 
more slowly. 

Step 2: Extract the variables that characterize the shape of the waveform and use the variables to build 
a model. 

Five characteristic variables, mean, variance, extreme value, kurtosis and skewness, are extracted 
from the graph in the first step, and these five characteristic variables are utilized to build a classification 
model with the help of a decision tree. 

The decision tree consists of nodes and directed edges, and the types of nodes include the root node 
at the beginning, the internal nodes in the middle, and the leaf nodes as the final output [2,3]. The root 
node is the starting point of the tree and contains the entire data set. The algorithm proceeds step by step 
through recursion in constructing the decision tree. At each recursion, the algorithm divides the dataset 
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based on the current optimal features or attributes to ensure that the split subset has a smaller error [4]. 
This process is repeated until the model reaches an optimal state. 

With the help of python language, the specific data values of five feature variables, namely mean, 
variance, extreme value, kurtosis and skewness, were calculated for each group of magnetic flux density 
data, and then the classification model was built using decision tree, while the feature importance diagram 
was drawn as shown in Figure 4. 

 
Figure 4. Feature importance diagram 

As can be seen in Figure 4, the importance of kurtosis is 1, and the importance of the rest of the 
variables is 0. Therefore, only one feature variable, kurtosis, is retained in the subsequent classification 
models 

Step 3: Predicting excitation waveforms using classification models. 

The data in the test set were lassoed into the model to predict the excitation waveforms for each set 
of data, and the respective quantities of the three waves in the statistical test set are shown in Table. 1. 

Table. 1. Number of waveforms 

Waveform Quantity 
Sine 20 

Triangle 44 
Trapezoidal 16 

The categorization results for the sample numbers: 1, 5, 15, 25, 35, 45, 55, 65, 75, and 80 are shown 
in Table. 2. 

Table. 2. Waveform prediction 

No. Waveform 
1 Triangle wave 
5 Triangle wave 

15 Sine wave 
25 Triangle wave 
35 Trapezoidal wave 
45 Trapezoidal wave 
55 Triangle wave 
65 Triangle wave 
75 Triangle wave 
80 Sine wave 

Step 4: Analyze the validity and reasonableness of the classification model. 

The data in the validation set are applied to the model, and the excitation waveforms of each set of 
data are predicted, and the comparison with the actual values is made to obtain the confusion matrix as 
shown in Table.3. 
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Table. 3. Confusion matrix 

 Actual value 
Sine wave Triangle wave Trapezoidal wave 

Predicted value 
Sine wave 797 0 0 

Triangle wave 0 977 0 
Trapezoidal wave 0 0 706 

The resulting accuracy is: 
797 977 706 100%

797 0 0 0 977 0 0 0 706
Accuracy + +

= =
+ + + + + + + +

. It 

shows that it is extremely easy to separate the waveforms of various excitations from the characteristic 
variable of kurtosis, and also shows the validity of the model. 

In addition to this, in order to check the reasonableness of the model, the images of magnetic flux 
density with respect to time for the data sets in the test set with serial numbers 1, 5, 15, 25, 35, 45, 55, 
65, 75, and 80 are plotted as shown in Figure 5. 

 
Figure 5. Magnetic flux variation with time 

It can be found that in the above images, the images with serial numbers 15, 80 basically satisfy the 
characteristics of sine wave images, the images with serial numbers 1, 5, 25, 55, 65, 75 basically satisfy 
the characteristics of triangle wave images, and the images with serial numbers 35, 45 basically satisfy 
the characteristics of trapezoidal wave images. Meanwhile comparing the prediction results of the 
classification model, it is consistent with the graphical comparison results, therefore, it shows that the 
classification model is very reasonable. 

3. Least squares based correction and analysis of the Steinmetz equation 

Firstly, based on the original Steinmetz equation, the factor of temperature was added, and the original 
equation was modified according to three ways; secondly, a model was built according to the three 
modified equations, and parameter estimation was carried out by using the least squares estimation [5], 
and at the same time, the advantages and disadvantages of the three models were compared, and the 
optimal model was selected as the final modified equation; finally, the effects of the final modified 
equation were compared with those predicted by the original Steinmetz equation. 

3.1 Model building 

First, the equation is corrected according to the following three methods: 

Method 1: 1 1 1
1 mP k f B Tα β γ= . 

Method 2: 1 1 1
1

T
mP k f B eα β γ= . 
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Method 3: After reviewing, it is understood that the temperature change has a more significant effect 
on the coefficient k_1 in the Steinmetz equation, and the effect on the parameters 1α  and 1β  is not so 
significant, therefore, the equation is corrected as follows: 

 ( ) 1 12
0 1 21 .mP k C T C T f Bα β= + +             (1) 

For the modified equations in Methods 1 and 2, the values of the parameters 1k , 1α , and 1β  are 

estimated using least-squares estimation, and thus the relationship between the core loss P  and the 
frequency f , the maximum flux density mB , and the temperature T  is obtained. For method 3, it is 
assumed that the parameters 1α  and 1β  are not affected by the temperature, therefore, firstly, the 

parameters 1α  and 1β  in the original Steinmetz equation 1 1
1 mP k f Bα β=  are estimated using the 

least-squares estimation, and then the obtained values are substituted into the modified equation of 

method 3, which is obtained as ( )
1 1

2
0 1 21

m

P k C T C T
f Bα β = + + , and then the parameters 1C  and 

2C  are estimated using the least squares estimation, and the final model can be obtained. 

3.2 Model solving and analysis 

Least squares estimation of a multiple linear regression model: 

Assuming that there are k factors affecting the dependent variable y , we obtain n  sets of 
observations ( 1i i iky x x…， ， ， ),   1, 2,...,i n= , for the regression model: 

y Xβ ε= +                               (2) 

Find the least squares estimate β̂  of the parameter vector β . This method is to find an estimate of 
β  that minimizes the square of the length 2Xy β− of the deviation vector Xyε β= − . 

 ( ) ( ) ( )'2Q Xy y X y Xβ β β β= − = − −  (3) 

Expand this equation as: 

 ( )Q 2y y y X X Xβ β β β= − +′ ′ ′ ′  (4) 

Taking the partial derivative of β  and ordering it to be zero yields the regular equation: 

 ˆX X X yβ ′=′  (5) 

A sufficient condition for this system of linear equations to have a unique solution is that X X′  has 
rank 1k + , and we always assume that this condition holds. Thus, we get the unique solution: 

 ' 1ˆ ( )X X X yβ −= ′  (6) 

According to the extreme value theory of calculus, β̂  is just a stationary point of the function 

( )Q β . We also need to show that β̂  does minimize ( )Q β . In fact, for any β , there is, 

   ( ) ( )2 2 2 ' 'ˆ ˆ ˆ ˆ ,X X X X X ˆ ˆ2 ˆ( ) )y y y X X X y Xβ β β β β β β β β β β β− = − + − = − + ′+ −′− − −   (7) 

Since β̂  satisfies the regular equation, it follows that ( ) 0ˆX y X β− =′ , and thus the third term 

of the above equation is equal to 0. This proves that for any β , there is: 
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 ( )2 2 ' ,ˆ ˆX X ) (y y X Xβ β β β β β′− = − + − −       (8) 

And that the third term of the above equation equals 0. 

Again, since X X′  is a positive definite array, the second term of the above equation is always non-
negative, and so: 

( ) ( )2 2Q X X Q .ˆ ˆy yβ β β β= − ≥ − =             (9) 

The equal sign holds if and only if: 

( )'( ) 0,ˆ ˆX Xβ β β β′− − =  (10) 

Therefore, the least squares estimate of the parameter β  is: 

' 1( ) .ˆ X X X yβ −= ′  (11) 

Moreover, the least squares estimate has many excellent properties, such as linear property, 
unbiasedness, and validity, where validity means that among all linear unbiased estimates, the least 
squares estimate is the only one that has the smallest variance. Therefore, in this paper, least squares 
estimation is used to fit the solution model. 

Before solving the model, it is necessary to linearize the three modified equations. Taking the first 
modified equation as an example, it is necessary to take logarithms of the left and right sides of the equal 
sign at the same time to obtain ( ) ( ) ( ) ( ) ( )1 1 1 1ln ln ln ln lnmP k f B Tα β γ= + + + , and then take 

logarithms of the variables , , mP f B , and T  in the original data, and utilize least squares estimation 
to find the values of the parameters, and then obtain the final model. 

Before fitting the least squares estimation, a test for multicollinearity was carried out on the three 
variables and it was found that the VIF values were less than 10, indicating that there is no 
multicollinearity in these three variables. 

In this section, the least squares estimation was carried out with the help of python to obtain the final 
model of Steinmetz equation and the three modified equations and respectively:

1.59183 2.505980.16419 mP f B= . 1.65209 2.52534 0.598701.27009 mP f B T −= . 
1.65232 2.52794 0.011750.23667 T

mP f B e−= . ( )2 1.59183 2.505980.54052 0.0084 0.00001 mP T T f B= − + . 

And find the 2R of the four models on the training set as 0.93701; 0.96719; 0.97416; 0.95694. 

The 2R  of the four models on the validation set are: 0.93900; 0.98145; 0.98926; 0.96857. 

The analysis of variance (ANOVA) using python yielded residual plots and Q-Q plots for the 
Steinmetz equation and the three modified equations as shown in Figure 6, Figure 7, Figure 8 and Figure 
9, respectively. 

 
Figure 6. Residual and Q-Q plots for the Steinmetz equation 
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Figure 7. Residual and Q-Q plots for method 1 modified equation 

 
Figure 8. Residuals and Q-Q plots for method 2 modified equation 

 
Figure 9. Residuals and Q-Q plots for method 3 modified equation 

Combining the 2R and ANOVA results of correcting the three models, it was found that Method 2 
had the largest 2R  and the best residual plots and Q-Q plots on both the training and validation sets, 
and thus the corrected equation of Method 2 was finally chosen as the final temperature correction 
equation. 

Comparing the corrected equation with the Steinmetz equation, it is found that the 2R  of the former 
is larger than that of the latter, and the residual and Q-Q plots of the former are also better than that of 
the latter, so the constructed corrected equation predicts the core loss better than the Steinmetz equation. 

4. Exploration of core loss factors based on ANOVA modeling 

A one-way ANOVA model is used to analyze how the three factors of temperature, excitation 
waveform and excitation material independently affect the core loss; a two-way ANOVA with an 
interaction effect scenario is used to explore how the temperature, excitation waveform and excitation 
material synergistically affect the core loss; and the effect of each factor is solved using these two models. 
Finally, the two-by-two interaction diagrams of the three factors are drawn to find out the conditions 
under which the core loss may be minimized. 
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4.1 Modeling 

One-way ANOVA is a statistical method used to compare the differences between the means of 
multiple groups [6]. The specific modeling process is as follows: 

Hypothesis: 

Original hypothesis ( 0H ): the means of all groups are equal, i.e., 1 2 kµ µ µ= = =
. 

Alternative hypothesis ( aH ): at least one group has different means. 

Model construction and expression: the one-way ANOVA model can be expressed as: 

 .ij i ijY µ α= + +  (12) 

Where ijY  denotes the jth  observation of the ith  group, µ  denotes the overall mean, iα  

denotes the effect of the ith  group (i.e., it denotes the degree of influence on the response variable), 
and ij  is the error term, which is assumed to be independent and to follow the normal distribution, with 

a mean of 0 and a variance of 2σ . 

Two-way ANOVA is used to test the effect of two independent variables on a response variable and 
the interaction between them. The specific modeling process is as follows: 

Hypothesis: 

Original hypothesis ( 0H ): 

The means of independent variable A  are equal, i.e., 1 2A A Akµ µ µ= =…= . Means of 

independent variable B  are equal, i.e. 1 2B B Bkµ µ µ= =…= . There is no interaction between 
independent variables A and B. 

Alternative hypothesis ( aH ): 

At least one set of independent variables A  has different means. At least one set of independent 
variables B  has different means. There is an interaction between independent variables A  and B . 

Model construction and expression: the two-factor ANOVA model can be expressed as: 

 ( ) .ijk i j ij ijkY µ α β αβ= + + + +  (13) 

Where ijkY  denotes the kth  observation at the jth  level of the ith  group, µ  denotes the 

overall mean, iα  denotes the effect of independent variable A  (i.e., the extent to which independent 

variable A influences the response variable), jβ  denotes the effect of independent variable B  (i.e., 

the extent to which independent variable B  influences the response variable), and ijαβ  denotes the 

effect of the interaction between independent variables A  and B  (i.e., the extent to which 
independent variables A  and B  synergistically influence the response variable). B synergistically on 
the response variable), ijk  is the error term, which is assumed to be independent and normally 

distributed with mean 0 and variance 2σ . 

4.2 Results and analysis 

In this paper, the aov function in R language is utilized to perform the ANOVA on the data in Material 
1 and the eta_squared function is utilized to quantify the degree of influence of the variables and the 
following results are obtained: 

The one-way ANOVA of temperature on core loss yields the ANOVA in Table. 4. 
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Table. 4. One-way ANOVA of temperature on core loss 

Source of 
variance 

Sum of 
squares 

Degree of 
freedom Mean square F-

value p-value 

Different 
temperatures 

127.513 10×  3 122.504 10×  
17.75 111.7 10−×  Error 151.748 10×  12396 111.411 10×  

Total 151.756 10×  12399  
It can be seen that the required p-value is less than the significance level of 0.05 and the original 

hypothesis is rejected, thus indicating that different temperatures produce different levels of effect on the 
magnitude of core losses. 

The one-way ANOVA analysis of excitation waveform on core loss yields the ANOVA in Table .5. 

Table. 5. One-way ANOVA of excitation waveform on core loss  

Source of 
variance Sum of squares Degree of freedom Mean square F-

value p-value 

Different wave 137.52 10×  2 133.76 10×  
277.3 162 10−< ×  Error 151.681 10×  12397 111.356 10×  

Total 151.756 10×  12399  
It can be seen that the required p-value is less than the significance level of 0.05 and the original 

hypothesis is rejected, thus indicating that the different excitation waveforms have different degrees of 
influence on the magnitude of core losses. 

The one-way ANOVA analysis of core material on core loss yields the ANOVA in Table. 6. 

Table. 6. One-way ANOVA of core material and core loss 

Source of 
variance 

Sum of 
squares 

Degree of 
freedom Mean square F-value p-value 

Different core 
materials 

134.114 10×  3 131.371 10×  
99.12 162 10−< ×  Error 151.715 10×  12396 111.383 10×  

Total 151.756 10×  12399  
It can be seen that the required p-value is less than the significance level of 0.05 and the original 

hypothesis is rejected, thus indicating that different core materials have different degrees of influence on 
the magnitude of core losses. 

A two-factor ANOVA was performed on the temperature and excitation waveform to obtain the 
ANOVA table and the quantitative results of the degree of influence, and the two-by-two interaction 
plots of the three factors were drawn as shown in Figure 10, Figure 11 and Figure 12. 

 
Figure 10. Interaction of 

temperature with material 

 
Figure 11.  Interaction of 

temperature with waveforms 

 
Figure 12. Interaction of 
waveform with material 
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From the three graphs, it can be seen that the core loss may be minimized when the temperature is 
taken to be 90 degrees Celsius, the core material is taken to be material IV, and the excitation waveform 
is taken to be sinusoidal. 

5. Conclusions 

In this study, the core loss of magnetic components is systematically analyzed by means of various 
modeling algorithms. The decision tree model performs well in the excitation waveform classification 
task, and with the extracted features such as mean and kurtosis, it can effectively differentiate between 
sinusoidal, triangular, and trapezoidal waveforms, and the model is highly accurate and reasonably 
reliable. Regarding the correction of the Steinmetz equation, the three correction equations constructed 
by adding the temperature factor are solved and compared by the least-squares method to determine the 
optimal equation, which significantly improves the prediction accuracy of the core loss at different 
temperatures. Using the ANOVA model, it is found that temperature, excitation waveform and core 
material all have a significant effect on the core loss, and there is an interaction between some of the 
factors. Taken together, these modeling algorithms provide an effective means to study core losses. In 
the future, the study can be further expanded to incorporate more influencing factors and improve the 
model, so as to provide more accurate support for the optimal design of magnetic components and the 
efficient operation of power electronic systems. 
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