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Abstract: With the continuous advancement of industrial intelligence, the requirements for the stable
operation of automotive production line equipment are becoming increasingly higher. Addressing the
shortcomings of traditional fault warning methods, such as poor real-time performance and low
accuracy, this paper takes the H automotive intelligent assembly production line as the research object.
It designs an intelligent monitoring and fault early warning system for automotive production line
equipment based on a sensor network, neural network clustering analysis, and a Least Squares Support
Vector Machine (LS-SVM) regression model. By collecting and analyzing equipment operational data
in real-time, the system improves fault warning accuracy and shortens warning response time,
providing effective technical support for automotive intelligent manufacturing.
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1. Introduction

Modern automotive manufacturing production lines are highly intelligent industrial production
systems. Equipment reliability is directly related to production efficiency and economic benefits.
traditional maintenance methods struggle to meet the requirements for equipment reliability in modern
intelligent manufacturing. Following the widespread adoption of 10T sensing technology, the methods
for collecting industrial equipment operational data have undergone a revolutionary change.
High-frequency sensors have sampling rates up to the millisecond level, with a single device generating
tens of GB of data daily!l . This explosive growth of data provides support for intelligent fault warning
but also presents challenges in data processing and analysis. This paper utilizes experimental data from
the H automotive assembly workshop to construct an intelligent early warning system for multi-source
heterogeneous data, solving the dual bottlenecks of real-time performance and accuracy in traditional
methods. It achieves a transition from reactive maintenance to predictive maintenance, providing strong
technical support for the intelligent transformation and upgrading of the automotive manufacturing
industry.

2. Intelligent Monitoring System Architecture and Key Technologies
2.1 System Architecture

The intelligent monitoring system adopts a hierarchical distributed architecture design, fully
considering the complexity and reliability requirements of modern industrial environments. The system
architecture consists of four layers: Device Layer, Edge Layer, Platform Layer, and Application Layer.
Communication and control command transmission between these layers rely on standard industrial
communication protocolst?.

The Device Layer deploys a large number of different types of high-precision sensors, such as
vibration acceleration sensors, infrared temperature sensors, and pressure sensors, totaling 342
monitoring points, enabling comprehensive perception of the operating status of critical equipment.

The Edge Layer primarily includes three functions: firstly, localized data preprocessing, including
signal filtering, noise reduction, and feature extraction; secondly, real-time data analysis for simple
fault judgment and warning rules; thirdly, acting as a data buffer to ensure data integrity during network
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disconnections. The Edge Layer uses the OPC UA protocol to communicate with the Device Layer and
industrial Ethernet to communicate with the Platform Layer.

The Platform Layer is the core processing layer of the system, deployed in an enterprise private
cloud environment. It adopts a microservices architecture, using Docker containerization technology to
deploy various data processing and analysis services. The Platform Layer includes multiple functional
modules: the data storage module uses the time-series database InfluxDB to store massive monitoring
data; the data processing module performs further data cleaning and feature engineering; the model
service module runs various machine learning algorithms. The Platform Layer primarily conducts
in-depth analysis and modeling on data uploaded from the Edge Layer to achieve accurate equipment
status assessment and fault prediction.

The Application Layer, as the top layer of the system, provides various services to end-users. This
layer includes a web monitoring interface, mobile applications, an early warning information push
system, and many other components. The key role of the Application Layer is to present the analysis
results from the lower layers in an intuitive form to users, providing functions such as equipment status
monitoring, warning management, and maintenance decision support.’! It interacts with the Platform
Layer via RESTful APIs to ensure consistency between front-end and back-end data.

2.2 Key Technologies

2.2.1 Data Collection

The data acquisition module spans the Device Layer and the Edge Layer in the system architecture.
It selects the OPC UA unified architecture protocol to ensure standardized access of data from devices
of different manufacturers. To address the severe electromagnetic interference in industrial
environments, the data acquisition module is designed with multiple filtering and protection circuits,
ensuring a signal-to-noise ratio above 75 dB. Data transmission uses timestamp synchronization, with
the maximum time error controlled within 22 ms, thus achieving temporal consistency for multi-source
data. The data preprocessing stage uses an improved sliding window Z-score standardization method:

X _ X ~ Huindow
norm —
Gwindow

Where  f4,iq0 1S the mean of the data within the sliding window, and o4, iS the standard

deviation of the data within the sliding window. By setting an adaptive window size (2-10s), data
dynamics are maintained while eliminating instantaneous interference. Main Sensor Configuration
Parameters are shown in Table 1.

Table 1 Main Sensor Configuration Parameters

Sensor Model Sampling | Measurement | Installation | Quantity | Communication
Type Specification | Frequency Accuracy Workstation Protocol
Vibration | PCB 608A11 10 kHz +).5% Engine 128 IEPE
Accel. Assembly
Infrared Fluke 62 100 Hz +0.5°C Welding 87 4-20mA
Temp. Max+ Robot
Pressure Rosemount 1 kHz 30.1% Hydraulic 127 HART
Sensor 3051 System
Acoustic Physical 500 kHz +dB Transmission 42 USB
Emission Acoustics Test
Current Hioki 3286 50 Hz 30.2% Motor Drive 58 Modbus
Monitor

2.2.2 Neural Network Feature Extraction

The neural network feature extraction module is located in the model service module of the
Platform Layer. Feature extraction is a key link in the intelligent early warning system, directly
affecting the accuracy of subsequent analysis. This paper designs an intelligent feature extraction
architecture combining a Deep Convolutional Network and a Long Short-Term Memory (LSTM)
network. This architecture leverages the strengths of CNN in spatial feature extraction and LSTM in
time series modeling, achieving deep feature mining of multi-source heterogeneous data.
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The Convolutional Neural Network part uses a four-layer deep structure, each layer containing
convolution operations, activation functions, and pooling operations. The convolutional layers use the
ReL.U activation function:

f (x) = max(0, x)

Where f(X). represents the output of the ReLU function. X: represents the input value to
this activation function, generally the weighted sum from the previous layer's output.

This activation function is computationally fast and also helps alleviate the vanishing gradient
problem in deep networks. The pooling layers use max pooling operation with a kernel size of 2x2 and
a stride of 2, preserving main features while reducing the number of parameters. To prevent overfitting,
a Dropout layer is added after each convolutional layer with a dropout rate of 0.25. The Long
Short-Term Memory network part consists of three layers, each with 128 memory units. LSTM
establishes long-term dependencies through gating mechanisms. The calculation formula for the forget
gate is:

fi =W, -[h,x]+b;)

Where ft represents the output value of the forget gate at time step t, its value range is [0,1],
controlling which information in the cell state will be discarded. o represents the Sigmoid activation
function, compressing the output to the (0, 1) interval. W, represents the weight matrix associated

with the forget gate. [h_l, Xt] represents the concatenation of the hidden state from the previous time

step ht_l and the input at the current time step X, into a vector. bf represents the bias vector of the
forget gate.

The input gate and output gate adopt similar structures, collectively controlling information flow
and memory, allowing the model to capture both short-term fluctuations and long-term trend features of
equipment operation.

The training process uses the Adam optimizer with an initial learning rate of 0.001, a batch size of
128, and a gradient clipping threshold set to 1.0 to prevent gradient explosion. The training data is
divided into training, validation, and test sets with ratios of 70%, 15%, and 15% respectively. After 120
training epochs, an accuracy of 94.3% was achieved on the test set, and the loss function value
converged to 0.086. The feature extraction effect visualized by t-SNE showed obvious clustering
phenomena for data points of different states, indicating that the extracted features have good
discriminative power.

2.2.3 Dynamic Clustering Analysis Algorithm

Equipment state identification is the foundation of fault warning. This paper uses an improved
density clustering algorithm to automatically partition operational states. The traditional DBSCAN
algorithm has shortcomings when processing industrial data, such as sensitivity to parameters and poor
adaptability to density variations. Therefore, this paper proposes an adaptive clustering algorithm based
on density reachability optimization.

The core of this algorithm is the dynamic selection of the neighborhood radius
https://media/imagel6.wmf (eps) and the minimum number of samples minPts parameters. By
analyzing the characteristics of the data distribution, the initial parameters are set as & =0.35 and
minPts=15. Kernel Density Estimation (KDE) is introduced to automatically adjust local parameters:

fh<x>=n—lhgr<(x;xij

Where h represents the bandwidth parameter, and K is the Gaussian kernel function. This
adaptive mechanism enables the algorithm to effectively handle industrial data with uneven densities.

To evaluate the clustering effect, comprehensive evaluation metrics including the Silhouette
Coefficient, Calinski-Harabasz Index, and Davies-Bouldin Index are used. The calculation formula for
the Silhouette Coefficient is::
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s(i) = D&l

max{a(i), b(i)}

Where S(i) represents the silhouette coefficient value for sample i, ranging between [-1, 1],
with larger values indicating better clustering results. a(i) represents the average distance from
samplei to all other samples in its own cluster (intra-cluster dissimilarity). b(i) represents the
average distance from sample i to all samples in the nearest cluster (inter-cluster dissimilarity).

Experiments show that the silhouette coefficient for normal operating conditions reaches 0.82, and
the accuracy rate for abnormal state detection reaches 91.5%. Using the clustering method, the
equipment operating states are divided into four categories: Normal, Slight Abnormality, Severe
Abnormality, and Critical Fault, providing a basis for hierarchical warning.

2.2.4 LS-SVM Regression Prediction Model

Trend prediction is an important part of fault warning. The Least Squares Support Vector Machine
(LS-SVM) can be used to establish an equipment state degradation prediction model. LS-SVM uses
solving linear equations instead of the quadratic programming problem in standard SVM, greatly
improving computational speed, making it particularly suitable for industrial real-time scenarios. The
regression model uses the Radial Basis Function (RBF) kernel:

| x— x|
K (X, xi):exp(—Tz'j

Where K(X,X;) represents the kernel function value between sample X and sample X,

measuring the similarity between the samples. X represents an input feature vector. X

. represents the

feature vector of the *j*-th sample in the training set. | X—X; | represents the Euclidean distance

between vectors X and X,.wmf. o represents the width parameter of the RBF kernel function,
controlling the function's range of influence and determining the smoothness of the model.

Kernel function parameter ¢ and the regularization parameter C are optimized using grid search
combined with cross-validation. The final optimal parameter combination is: penalty parameter C=125,
kernel parameter o =0.85.

The model is trained using historical normal operation data, constructing training samples through a
sliding window. Each sample contains feature data from 60 consecutive time points, and the prediction
target is the state value for the next 10 time points. Incremental learning is used during training; as new
monitoring data continuously joins the training set, the model can adapt to the slow changes in
equipment performancel®,

3. System Implementation and Verification
3.1 Experimental Platform Setup

The verification experiment was conducted on-site at the H Automobile Third Assembly Workshop.
This workshop has an annual production capacity of 150,000 vehicles and contains 356 sets of
automated equipment, making it an ideal industrial validation environment. The monitoring system
covers 12 key workstations across the four main process sections: stamping, welding, painting, and
assembly, including important equipment such as large presses, robotic welding stations, painting
robots, and assembly lines.

The hardware platform uses industrial-grade edge computing gateways (Intel Atom x7-E3950
processor, 8GB DDR4 memory) deployed near each workstation for local data preprocessing and
immediate analysis. The Platform Layer is deployed on the enterprise private cloud, using Docker
containerization deployment to ensure system scalability and maintainability. Data storage uses the
InfluxDB time-series database, which significantly improves data query speed compared to traditional
relational databases.

The data collection period was from March to August 2023, collecting a total of 2.7 TB of valid
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data records. This data covers various operating conditions, including normal operation, abnormal
operation, and faults. Data quality assessment results showed an effective data rate of 98.2%. Missing
data was filled using multiple imputation methods to ensure data integrity and reliability as much as
possible.

3.2 Model Training and Optimization

The model training process adopted a phased strategy. First, offline training was conducted using
historical data to establish the basic model. Afterwards, online learning was used to continuously
improve the model parameters. The training data underwent strict inspection and labeling, with state
labels confirmed jointly by domain experts and equipment engineers.

Special attention was paid to class imbalance during training. Using the SMOTE oversampling
method combined with cost-sensitive learning improved the recognition accuracy of minority classes!®.
Model hyperparameter tuning adopted Bayesian optimization, which is more efficient compared to grid
search.

The final model performed excellently on an independent test set. As shown in Table 2, compared to
traditional threshold methods, a single LSTM model, and a rule-based expert system, this system
increased fault warning accuracy to 92.7% and reduced the false alarm rate to 4.1%, demonstrating the
model's good recognition accuracy and stability. In terms of real-time performance, the system's
average response time was reduced to 3.5 minutes, significantly shorter than the traditional 25 minutes,
effectively improving the system's fault response speed. System Performance Comparative Analysis is
shown in Table 2.

Table 2 : System Performance Comparative Analysis

Performance Metric Traditional Single LSTM Rule-Based Expert This

Threshold Model System System
Method

Warning Accuracy 73.2% 85.6% 79.8% 92.7%

False Alarm Rate 18.5% 9.3% 15.2% 4.1%
Avg. Response Time 25min 8.2min 12.5min 3.5min

Prediction Lead Time 1.5h 3.8h 2.2h 6.2h

Model Training Time - 4.5h Manual Configuration 2.8h
Computing Resource Low High Medium Medium

Req.
Interpretability High Low High Medium
4. Conclusion

In summary, the intelligent monitoring system developed in this paper utilizes multi-source data
fusion and innovations in deep learning algorithms to improve the accuracy of equipment fault
warnings. The comprehensive use of deep convolutional networks and long short-term memory
networks leverages their respective strengths, fully utilizing the advantages of spatial feature extraction
and time series modeling. The improved density clustering algorithm effectively solves the clustering
problem of industrial data with uneven densities. The LS-SVM regression prediction model further
improves computational efficiency while maintaining prediction accuracy.
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