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Abstract: With the continuous advancement of industrial intelligence, the requirements for the stable 

operation of automotive production line equipment are becoming increasingly higher. Addressing the 

shortcomings of traditional fault warning methods, such as poor real-time performance and low 

accuracy, this paper takes the H automotive intelligent assembly production line as the research object. 

It designs an intelligent monitoring and fault early warning system for automotive production line 

equipment based on a sensor network, neural network clustering analysis, and a Least Squares Support 

Vector Machine (LS-SVM) regression model. By collecting and analyzing equipment operational data 

in real-time, the system improves fault warning accuracy and shortens warning response time, 

providing effective technical support for automotive intelligent manufacturing. 
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1. Introduction 

Modern automotive manufacturing production lines are highly intelligent industrial production 

systems. Equipment reliability is directly related to production efficiency and economic benefits. 

traditional maintenance methods struggle to meet the requirements for equipment reliability in modern 

intelligent manufacturing. Following the widespread adoption of IoT sensing technology, the methods 

for collecting industrial equipment operational data have undergone a revolutionary change. 

High-frequency sensors have sampling rates up to the millisecond level, with a single device generating 

tens of GB of data daily[1] . This explosive growth of data provides support for intelligent fault warning 

but also presents challenges in data processing and analysis. This paper utilizes experimental data from 

the H automotive assembly workshop to construct an intelligent early warning system for multi-source 

heterogeneous data, solving the dual bottlenecks of real-time performance and accuracy in traditional 

methods. It achieves a transition from reactive maintenance to predictive maintenance, providing strong 

technical support for the intelligent transformation and upgrading of the automotive manufacturing 

industry. 

2. Intelligent Monitoring System Architecture and Key Technologies 

2.1 System Architecture 

The intelligent monitoring system adopts a hierarchical distributed architecture design, fully 

considering the complexity and reliability requirements of modern industrial environments. The system 

architecture consists of four layers: Device Layer, Edge Layer, Platform Layer, and Application Layer. 

Communication and control command transmission between these layers rely on standard industrial 

communication protocols[2]. 

The Device Layer deploys a large number of different types of high-precision sensors, such as 

vibration acceleration sensors, infrared temperature sensors, and pressure sensors, totaling 342 

monitoring points, enabling comprehensive perception of the operating status of critical equipment. 

The Edge Layer primarily includes three functions: firstly, localized data preprocessing, including 

signal filtering, noise reduction, and feature extraction; secondly, real-time data analysis for simple 

fault judgment and warning rules; thirdly, acting as a data buffer to ensure data integrity during network 
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disconnections. The Edge Layer uses the OPC UA protocol to communicate with the Device Layer and 

industrial Ethernet to communicate with the Platform Layer. 

The Platform Layer is the core processing layer of the system, deployed in an enterprise private 

cloud environment. It adopts a microservices architecture, using Docker containerization technology to 

deploy various data processing and analysis services. The Platform Layer includes multiple functional 

modules: the data storage module uses the time-series database InfluxDB to store massive monitoring 

data; the data processing module performs further data cleaning and feature engineering; the model 

service module runs various machine learning algorithms. The Platform Layer primarily conducts 

in-depth analysis and modeling on data uploaded from the Edge Layer to achieve accurate equipment 

status assessment and fault prediction. 

The Application Layer, as the top layer of the system, provides various services to end-users. This 

layer includes a web monitoring interface, mobile applications, an early warning information push 

system, and many other components. The key role of the Application Layer is to present the analysis 

results from the lower layers in an intuitive form to users, providing functions such as equipment status 

monitoring, warning management, and maintenance decision support.[3] It interacts with the Platform 

Layer via RESTful APIs to ensure consistency between front-end and back-end data. 

2.2 Key Technologies 

2.2.1 Data Collection 

The data acquisition module spans the Device Layer and the Edge Layer in the system architecture. 

It selects the OPC UA unified architecture protocol to ensure standardized access of data from devices 

of different manufacturers. To address the severe electromagnetic interference in industrial 

environments, the data acquisition module is designed with multiple filtering and protection circuits, 

ensuring a signal-to-noise ratio above 75 dB. Data transmission uses timestamp synchronization, with 

the maximum time error controlled within ±2 ms, thus achieving temporal consistency for multi-source 

data. The data preprocessing stage uses an improved sliding window Z-score standardization method: 
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Where window  is the mean of the data within the sliding window, and window  is the standard 

deviation of the data within the sliding window. By setting an adaptive window size (2-10s), data 

dynamics are maintained while eliminating instantaneous interference. Main Sensor Configuration 

Parameters are shown in Table 1. 

Table 1 Main Sensor Configuration Parameters 

Sensor 

Type 

Model 

Specification 

Sampling 

Frequency 

Measurement 

Accuracy 

Installation 

Workstation 

Quantity Communication 

Protocol 

Vibration 

Accel. 

PCB 608A11 10 kHz ±0.5% Engine 

Assembly 

128 IEPE 

Infrared 

Temp. 

Fluke 62 

Max+ 

100 Hz ±0.5℃ Welding 

Robot 

87 4-20mA 

Pressure 

Sensor 

Rosemount 

3051 

1 kHz ±0.1% Hydraulic 

System 

127 HART 

Acoustic 

Emission 

Physical 

Acoustics 

500 kHz ±1dB Transmission 

Test 

42 USB 

Current 

Monitor 

Hioki 3286 50 Hz ±0.2% Motor Drive 58 Modbus 

2.2.2 Neural Network Feature Extraction 

The neural network feature extraction module is located in the model service module of the 

Platform Layer. Feature extraction is a key link in the intelligent early warning system, directly 

affecting the accuracy of subsequent analysis. This paper designs an intelligent feature extraction 

architecture combining a Deep Convolutional Network and a Long Short-Term Memory (LSTM) 

network. This architecture leverages the strengths of CNN in spatial feature extraction and LSTM in 

time series modeling, achieving deep feature mining of multi-source heterogeneous data. 
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The Convolutional Neural Network part uses a four-layer deep structure, each layer containing 

convolution operations, activation functions, and pooling operations. The convolutional layers use the 

ReLU activation function: 

( ) max(0, )f x x  

Where ( )f x
: 

 represents the output of the ReLU function. x :  represents the input value to 

this activation function, generally the weighted sum from the previous layer's output. 

This activation function is computationally fast and also helps alleviate the vanishing gradient 

problem in deep networks. The pooling layers use max pooling operation with a kernel size of 2x2 and 

a stride of 2, preserving main features while reducing the number of parameters. To prevent overfitting, 

a Dropout layer is added after each convolutional layer with a dropout rate of 0.25. The Long 

Short-Term Memory network part consists of three layers, each with 128 memory units. LSTM 

establishes long-term dependencies through gating mechanisms. The calculation formula for the forget 

gate is: 

1( [ , ] )t f t t ff W h x b     

Where tf  represents the output value of the forget gate at time step t , its value range is [0,1], 

controlling which information in the cell state will be discarded.   represents the Sigmoid activation 

function, compressing the output to the (0, 1) interval. 
fW  represents the weight matrix associated 

with the forget gate. 1[ , ]t th x  represents the concatenation of the hidden state from the previous time 

step 1th   and the input at the current time step tx  into a vector. 
fb  represents the bias vector of the 

forget gate. 

The input gate and output gate adopt similar structures, collectively controlling information flow 

and memory, allowing the model to capture both short-term fluctuations and long-term trend features of 

equipment operation. 

The training process uses the Adam optimizer with an initial learning rate of 0.001, a batch size of 

128, and a gradient clipping threshold set to 1.0 to prevent gradient explosion. The training data is 

divided into training, validation, and test sets with ratios of 70%, 15%, and 15% respectively. After 120 

training epochs, an accuracy of 94.3% was achieved on the test set, and the loss function value 

converged to 0.086. The feature extraction effect visualized by t-SNE showed obvious clustering 

phenomena for data points of different states, indicating that the extracted features have good 

discriminative power. 

2.2.3 Dynamic Clustering Analysis Algorithm 

Equipment state identification is the foundation of fault warning. This paper uses an improved 

density clustering algorithm to automatically partition operational states. The traditional DBSCAN 

algorithm has shortcomings when processing industrial data, such as sensitivity to parameters and poor 

adaptability to density variations. Therefore, this paper proposes an adaptive clustering algorithm based 

on density reachability optimization. 

The core of this algorithm is the dynamic selection of the neighborhood radius 

https://media/image16.wmf (eps) and the minimum number of samples minPts parameters. By 

analyzing the characteristics of the data distribution, the initial parameters are set as  =0.35 and 

minPts=15. Kernel Density Estimation (KDE) is introduced to automatically adjust local parameters: 
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Where h  represents the bandwidth parameter, and K is the Gaussian kernel function. This 

adaptive mechanism enables the algorithm to effectively handle industrial data with uneven densities. 

To evaluate the clustering effect, comprehensive evaluation metrics including the Silhouette 

Coefficient, Calinski-Harabasz Index, and Davies-Bouldin Index are used. The calculation formula for 

the Silhouette Coefficient is::  
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Where ( )s i  represents the silhouette coefficient value for sample i , ranging between [-1, 1], 

with larger values indicating better clustering results. ( )a i
 

represents the average distance from 

sample i  to all other samples in its own cluster (intra-cluster dissimilarity). ( )b i
 

represents the 

average distance from sample i  to all samples in the nearest cluster (inter-cluster dissimilarity). 

Experiments show that the silhouette coefficient for normal operating conditions reaches 0.82, and 

the accuracy rate for abnormal state detection reaches 91.5%. Using the clustering method, the 

equipment operating states are divided into four categories: Normal, Slight Abnormality, Severe 

Abnormality, and Critical Fault, providing a basis for hierarchical warning. 

2.2.4 LS-SVM Regression Prediction Model 

Trend prediction is an important part of fault warning. The Least Squares Support Vector Machine 

(LS-SVM) can be used to establish an equipment state degradation prediction model. LS-SVM uses 

solving linear equations instead of the quadratic programming problem in standard SVM, greatly 

improving computational speed, making it particularly suitable for industrial real-time scenarios. The 

regression model uses the Radial Basis Function (RBF) kernel: 
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Where ( , )iK x x  represents the kernel function value between sample x  and sample ix , 

measuring the similarity between the samples. x represents an input feature vector. ix  represents the 

feature vector of the *j*-th sample in the training set. | |ix x
 

represents the Euclidean distance 

between vectors x  and ix .wmf.   represents the width parameter of the RBF kernel function, 

controlling the function's range of influence and determining the smoothness of the model. 

Kernel function parameter   and the regularization parameter C are optimized using grid search 

combined with cross-validation. The final optimal parameter combination is: penalty parameter C=125, 

kernel parameter  =0.85. 

The model is trained using historical normal operation data, constructing training samples through a 

sliding window. Each sample contains feature data from 60 consecutive time points, and the prediction 

target is the state value for the next 10 time points. Incremental learning is used during training; as new 

monitoring data continuously joins the training set, the model can adapt to the slow changes in 

equipment performance[4]. 

3. System Implementation and Verification 

3.1 Experimental Platform Setup 

The verification experiment was conducted on-site at the H Automobile Third Assembly Workshop. 

This workshop has an annual production capacity of 150,000 vehicles and contains 356 sets of 

automated equipment, making it an ideal industrial validation environment. The monitoring system 

covers 12 key workstations across the four main process sections: stamping, welding, painting, and 

assembly, including important equipment such as large presses, robotic welding stations, painting 

robots, and assembly lines. 

The hardware platform uses industrial-grade edge computing gateways (Intel Atom x7-E3950 

processor, 8GB DDR4 memory) deployed near each workstation for local data preprocessing and 

immediate analysis. The Platform Layer is deployed on the enterprise private cloud, using Docker 

containerization deployment to ensure system scalability and maintainability. Data storage uses the 

InfluxDB time-series database, which significantly improves data query speed compared to traditional 

relational databases. 

The data collection period was from March to August 2023, collecting a total of 2.7 TB of valid 
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data records. This data covers various operating conditions, including normal operation, abnormal 

operation, and faults. Data quality assessment results showed an effective data rate of 98.2%. Missing 

data was filled using multiple imputation methods to ensure data integrity and reliability as much as 

possible. 

3.2 Model Training and Optimization 

The model training process adopted a phased strategy. First, offline training was conducted using 

historical data to establish the basic model. Afterwards, online learning was used to continuously 

improve the model parameters. The training data underwent strict inspection and labeling, with state 

labels confirmed jointly by domain experts and equipment engineers. 

Special attention was paid to class imbalance during training. Using the SMOTE oversampling 

method combined with cost-sensitive learning improved the recognition accuracy of minority classes[5]. 

Model hyperparameter tuning adopted Bayesian optimization, which is more efficient compared to grid 

search. 

The final model performed excellently on an independent test set. As shown in Table 2, compared to 

traditional threshold methods, a single LSTM model, and a rule-based expert system, this system 

increased fault warning accuracy to 92.7% and reduced the false alarm rate to 4.1%, demonstrating the 

model's good recognition accuracy and stability. In terms of real-time performance, the system's 

average response time was reduced to 3.5 minutes, significantly shorter than the traditional 25 minutes, 

effectively improving the system's fault response speed. System Performance Comparative Analysis is 

shown in Table 2. 

Table 2 : System Performance Comparative Analysis 

Performance Metric Traditional 

Threshold 

Method 

Single LSTM 

Model 

Rule-Based Expert 

System 

This 

System 

Warning Accuracy 73.2% 85.6% 79.8% 92.7% 

False Alarm Rate 18.5% 9.3% 15.2% 4.1% 

Avg. Response Time 25min 8.2min 12.5min 3.5min 

Prediction Lead Time 1.5h 3.8h 2.2h 6.2h 

Model Training Time - 4.5h Manual Configuration 2.8h 

Computing Resource 

Req. 

Low High Medium Medium 

Interpretability High Low High Medium 

4. Conclusion 

In summary, the intelligent monitoring system developed in this paper utilizes multi-source data 

fusion and innovations in deep learning algorithms to improve the accuracy of equipment fault 

warnings. The comprehensive use of deep convolutional networks and long short-term memory 

networks leverages their respective strengths, fully utilizing the advantages of spatial feature extraction 

and time series modeling. The improved density clustering algorithm effectively solves the clustering 

problem of industrial data with uneven densities. The LS-SVM regression prediction model further 

improves computational efficiency while maintaining prediction accuracy. 

Acknowledgement 

Research on Fault Warning Technology for Industrial Production Line Equipment Based on Neural 

Networks; Project Type: General Funding Project for Scientific Research in Higher Education 

Institutions in Hainan Province in 2024; Project Number: Hnky2024-71. 

References 

[1] Lan Huili, Zhang Rencheng. Feature Extraction of Arc Sound Accompanying Fault Arc Based on 

Wavelet Analysis[J]. Proceedings of the CSU-EPSA, 2008, 20(4):57-62. (Note: Journal title translated 

approximately) 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 8, Issue 9: 34-39, DOI: 10.25236/AJCIS.2025.080905 

Published by Francis Academic Press, UK 

-39- 

[2] Ding Xiaoou, Yu Shengjian, Wang Muxian, Wang Hongzhi, Gao Hong. Anomaly Detection in 

Industrial Time Series Data Based on Correlation Analysis[J]. Journal of Software, 2020, 

31(03),726-747. 

[3] Wang Hongzhi, Liang Zhiyu, Li Jianzhong, Gao Hong. Survey on Industrial Big Data Analytics: 

Models and Algorithms[J]. Big Data Research, 2018, 4(05), 62-79. (Note: Journal title translated) 

[4] Zhang Yuangang, Liu Kun, Yang Lin, Wang Lei. Construction of Big Data Platform for Coal 

Industry Monitoring and Data Processing Application Technology[J]. Coal Science and Technology. 

2019,47(03). 

[5] Cui Yan, Bao Zhiqiang. Survey on Association Rule Mining[J]. Application Research of Computers, 

2016, 33(2): 330-334. (Note: Journal title translated approximately) 

 

 

 


