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Abstract: With the widespread application of computed tomography (CT) imaging technology, the 
detection of aortic dilation has become an important clinical diagnostic tool. This study proposes an 
improved model based on YOLOv5 for the automatic detection of aortic dilation in CT images. To 
address the insufficient feature extraction of low-contrast structures and the multi-scale fusion issues in 
the original YOLOv5 model when applied to medical imaging, ResNet50 is introduced as the backbone 
network. Its deep residual structure enhances the recognition of vascular walls and calcified plaques. 
Additionally, a dynamic weighted bidirectional feature pyramid network (BiFPN) is used to replace 
PANet, achieving adaptive feature fusion of multi-scale vascular structures. Experiments conducted on 
a dataset consisting of 9,856 CT images show that the improved model achieves an mAP@0.5 of 88.79%, 
a 6.62% increase compared to the baseline model, while maintaining real-time performance. Notably, 
for small lesions (diameter < 10mm), the recall rate improved by 19.3%. Although the computational 
complexity of the model increased, it still meets the requirements for real-time clinical detection. The 
experimental results validate the effectiveness of the improved model in detecting aortic dilation, 
providing new optimization ideas and application potential for object detection in medical imaging. 
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1. Introduction 

Aortic dilation, as a critical early sign of cardiovascular disease, plays a crucial role in clinical 
diagnosis and intervention. Computed tomography (CT) imaging, due to its high-resolution advantage, 
has become the primary method for screening aortic lesions. However, traditional detection methods rely 
on manual delineation and morphological analysis, which are not only time-consuming and labor-
intensive but also highly dependent on the operator’s experience, making it difficult to address the 
challenges posed by small lesions (diameter <10mm) and complex anatomical structures. In recent years, 
deep learning technologies have provided new approaches for the automated analysis of medical images, 
with the YOLOv5 one-stage detection model demonstrating potential in real-time lesion localization 
tasks due to its efficient inference speed[1]. 

Despite the outstanding performance of YOLOv5 in natural scene object detection, its direct 
application in CT imaging for aortic dilation detection still faces significant limitations. On the one hand, 
the CSPDarknet backbone network used in the original model lacks sufficient capability in fine-grained 
feature extraction for medical images: the low-contrast characteristics of the aortic wall and surrounding 
tissues require the network to have stronger deep semantic capture capabilities, while the shallow feature 
reuse mechanism of CSPDarknet easily leads to the loss of vascular wall texture information. On the 
other hand, the PANet neck network adopts a fixed-weight unidirectional feature fusion strategy, which 
is difficult to adapt to the multi-scale characteristics of vascular morphology—the scale difference 
between the proximal aorta and the branching vessels can exceed 5 times, and the static fusion approach 
tends to suppress small-scale vascular features. 

Therefore, this study proposes a two-stage improvement strategy to optimize the model's performance. 
First, ResNet50 is introduced to replace the original backbone network, utilizing its deep residual 
structure to enhance the ability to distinguish between vascular wall edges and calcified plaques, and 
alleviate the gradient vanishing problem through skip connections, thereby improving sensitivity to low-
contrast lesions[2]. Second, a dynamically weighted bidirectional feature pyramid (BiFPN) is designed to 
replace PANet, allowing adaptive adjustment of multi-scale feature contributions through learnable 
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weight parameters, thus synchronously fusing high-level semantics and low-level details[3]. To verify the 
effectiveness of the improved approach, we conducted systematic ablation experiments on a dataset of 
9,856 CT images. The results indicate that the combined improved model, while maintaining real-time 
performance, achieved a 6.62% increase in detection accuracy (mAP@0.5) compared to the baseline, 
particularly improving the recall rate by 19.3% in small-scale lesions (diameter 3-5mm). This study 
provides a new optimization paradigm for target detection in complex anatomical structures in medical 
imaging, with significant clinical translation value. 

2. Theoretical Foundation 

In medical image target detection tasks, the model architecture design must balance feature 
representation capability and multi-scale adaptability. 

2.1 YOLOv5s Framework and Its Adaptation Challenges in Medical Imaging 

YOLOv5s achieves efficient object localization through a single-stage detection paradigm. Its core 
architecture includes the CSPDarknet backbone network, PANet neck network, and multi-scale detection 
heads. CSPDarknet reduces computational redundancy through cross-stage local connections and 
extracts multi-scale features via hierarchical downsampling. However, in the aorta detection scenario of 
CT images, this design faces dual challenges: First, the low contrast between the aortic wall and 
surrounding tissues requires the network to possess stronger deep semantic mining capabilities, yet the 
shallow feature reuse mechanism of CSPDarknet tends to lead to the loss of vascular wall texture 
information. Second, although PANet aggregates and fuses multi-scale features through bidirectional 
paths, its fixed weight strategy struggles to adapt to the scale diversity of vascular branches— for 
instance, the significant size difference between the ascending aorta (approximately 30mm in diameter) 
and the iliac artery branch (approximately 5mm in diameter) means that static fusion may suppress 
features of smaller vessels. 

2.2 Residual Learning Enhances Medical Feature Representation 

To overcome the bottleneck of fine-grained feature extraction in CSPDarknet, this study introduces 
the residual learning mechanism of ResNet50. ResNet enables the network to learn the residual between 
the input features xxx and the target mapping ℋ(𝑥𝑥) by constructing an identity mapping function 
ℱ(𝑥𝑥) = ℋ(𝑥𝑥) − 𝑥𝑥, thereby alleviating the gradient vanishing problem in deep networks. The Bottleneck 
module of ResNet50 enhances the multi-dimensional feature representation capability through channel 
expansion and compression strategies. The specific process can be formally expressed as: 

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1×1(𝑋𝑋𝑖𝑖𝑖𝑖))� 

𝑋𝑋spatial = ReLU�BN(Conv3×3(𝑋𝑋mid))� 

𝑋𝑋out = Conv1×1(𝑋𝑋spatial) 

In this context, 𝐶𝐶in represents the number of input channels, BN stands for batch normalization, and 
ReLU refers to the activation function. In CT images, such a structure can effectively extract 
morphological abnormal features in the aortic dilation region (e.g., local bulging and calcified plaques). 
Deeper convolution kernels (such as 7×7) cover a larger receptive field, and the low-level texture 
information retained by the skip connections significantly improves sensitivity to low-contrast lesions. 

2.3 Dynamic Weighted Optimization for Multi-Scale Feature Fusion 

To address the limitations of PANet in vascular multi-scale detection, BiFPN achieves dynamic 
feature fusion through bidirectional cross-scale connections and learnable weights. Its fusion process can 
be formally expressed as: 

𝑂𝑂 =
∑  𝑖𝑖 𝑤𝑤𝑖𝑖 ⋅ 𝑃𝑃𝑖𝑖
∑  𝑖𝑖 𝑤𝑤𝑖𝑖 + 𝜖𝜖

 

The 𝑤𝑤𝑖𝑖 represents the trainable scalar weights, and 𝑃𝑃𝑖𝑖 denotes the input features at different levels. 
𝜖𝜖 = 1𝑒𝑒 − 4 is used for numerical stability. As shown in Figure 1, the BiFPN propagates high-level 
semantic information (e.g., the location of the aortic root) through a top-down path, while the bottom-up 
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path refines spatial details (e.g., sharpness of vessel boundaries), with both paths working together to 
enhance the model's robustness to scale variations. Compared to traditional methods (Table 1), the 
dynamic weight mechanism allows the network to adaptively adjust the contribution of features—e.g., 
when detecting small vascular branches, the weight of high-level features 𝑤𝑤high can be automatically 
reduced to prevent semantic information from dominating. 

Table 1 Comparative Analysis of Feature Fusion Strategies 

Method Fusion Direction Weight Strategy Limitation in Medical Imaging 

FPN Unidirectional Fixed Weights High miss rate for vascular bifurcations 

PANet Bidirectional Fixed Weights Small vessel features are easily suppressed 

BiFPN Bidirectional Dynamic Learning Adaptive to multi-scale vascular features 

2.4 Synergistic Effect of the Improved Architecture 

By embedding ResNet50 and BiFPN into the YOLOv5 framework, an optimized detection paradigm 
for medical imaging is formed. The ResNet50 backbone network extracts vascular pathological features 
through deep residual blocks, while the BiFPN neck network dynamically allocates feature weights based 
on vascular scale: in large-scale regions such as the aortic root, high-level semantic features dominate 
localization; in small-scale regions such as branch vessels, low-level detail features are weighted higher. 
Through their synergistic interaction, the model is able to simultaneously overcome feature ambiguity in 
low-contrast images and the detection sensitivity disparity across multiple vascular scales, laying the 
theoretical foundation for improved accuracy in subsequent experiments. 

3. Research Methodology 

3.1 Baseline Model Framework 

This study uses YOLOv5s as the baseline model, which consists of the original architecture 
comprising the CSPDarknet53 backbone network, the PANet neck network, and multi-scale detection 
heads. The input CT images are normalized and resized to a resolution of 640×640, after which the 
backbone network extracts three sets of feature maps (80×80, 40×40, 20×20), each corresponding to 
vascular morphological features at different receptive fields. PANet fuses multi-scale features through 
both top-down and bottom-up paths, while the detection heads predict bounding box coordinates, 
confidence scores, and class probabilities based on an anchor box mechanism. The limitations of the 
baseline model are as follows: 

1)Limited Feature Extraction: The shallow gradient partitioning mechanism of CSPDarknet53 leads 
to the loss of deep vascular wall texture information. 

2)Static Feature Fusion: The fixed weight strategy of PANet struggles to adapt to the dynamic scale 
variations of vascular branches. 

3.2 Improvement of ResNet50 Backbone Network 

To enhance the fine-grained feature extraction capability of the aortic wall and dilation regions, 
ResNet50 is used to replace the original backbone network. The specific adjustments are as follows: 

First, feature layer extraction is performed to extract the output features of ResNet50's Stage 3 
(layer2), Stage 4 (layer3), and Stage 5 (layer4), corresponding to downsampling factors of 8×, 16×, and 
32×, respectively, generating feature maps with resolutions of 80×80, 40×40, and 20×20. 

Next, channel alignment is performed by using 1×1 convolutions to unify the output channels of each 
stage, compressing them to 256 dimensions. The calculation formula is: 

𝑃𝑃𝑖𝑖 = Conv1×1(𝐶𝐶𝑖𝑖)(𝑖𝑖 = 3,4,5) 

Where: 
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𝐶𝐶𝑖𝑖 ∈ ℝ𝐵𝐵×𝐷𝐷𝑖𝑖×𝐻𝐻𝑖𝑖×𝑊𝑊𝑖𝑖 represents the original output features from ResNet50’s 𝑖𝑖-th stage, with channel 
numbers 𝐷𝐷3 = 512 (Stage3), 𝐷𝐷4 = 1024 (Stage4), and 𝐷𝐷5 = 2048 (Stage5);  

Conv 1 × 1  denotes the 1 × 1  convolutional operation, producing an output channel number 
𝑜𝑜𝑜𝑜256;  

𝑃𝑃𝑖𝑖 ∈ ℝ𝐵𝐵×256×𝐻𝐻𝑖𝑖×𝑊𝑊𝑖𝑖 represents the channel-aligned feature maps for subsequent BiFPN processing. 

This formula defines the mapping process from ResNet50’s original features to unified-channel 
features through learnable 1 × 1 convolutional kernels.Key details include:  

Input feature map 𝐶𝐶𝑖𝑖  has dimensions 𝐵𝐵 × 𝐷𝐷𝑖𝑖 × 𝐻𝐻𝑖𝑖 × 𝑊𝑊𝑖𝑖  (where 𝐵𝐵  is batch size, 𝐻𝐻𝑖𝑖 × 𝑊𝑊𝑖𝑖  is 
spatial resolution);  

The 1x1 convolutional kernel parameters have dimensions 256 × 𝐷𝐷𝑖𝑖 × 1 × 1,linearly transforming 
the channel number from 𝐷𝐷𝑖𝑖 to 256;  

Output feature map 𝑃𝑃𝑖𝑖 unifies the channel dimension to 256, ensuring BiFPN requires no additional 
channel adjustments during multi-scale fusion. 

The channel alignment operation resolves feature dimension compatibility between ResNet50 and 
BiFPN while reducing computational complexity through dimensionality reduction. This mitigates GPU 
memory pressure caused by high-resolution medical imaging features. The linear transformation 
preserves local structural information of vascular walls, laying the foundation for subsequent 
dynamically weighted fusion. 

3.3 Jointly Improved Model Architecture 

The improved network architecture is shown in Figure 1. Since the detection and prediction phase 
remains unchanged, the overall process of the improved model is divided into two stages. 

 
Figure 1 ResNet 50 +Bifpn 
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First is the feature extraction stage, where the ResNet50 backbone network extracts multi-scale 
vascular features from CT images and reduces computational complexity through channel compression. 
Next is the feature fusion stage, where BiFPN performs bidirectional cross-scale fusion, generating three 
optimized feature maps of 80×80, 40×40, and 20×20. 

3.4 Loss Function Design 

The loss function consists of three components: bounding box regression loss, confidence loss, and 
classification loss. The overall formulation is: 

ℒtotal = 𝜆𝜆boxℒCIoU + 𝜆𝜆objℒobj + 𝜆𝜆clsℒcls 

3.4.1 CIoU Bounding Box Loss 

This loss accounts for the overlap ratio, center distance, and aspect ratio consistency between 
predicted and ground-truth boxes: 

ℒCIoU = 1 − IoU +
𝜌𝜌2(𝑏𝑏, 𝑏𝑏𝑔𝑔𝑔𝑔)

𝑐𝑐2
+ 𝛼𝛼𝛼𝛼 

where 𝜌𝜌 is the Euclidean distance between the centers of the predicted and groundtruth boxes, 𝑐𝑐 is 
the diagonal length of the smallest enclosing rectangle, 𝑣𝑣 measures aspect ratio consistency, and 𝛼𝛼 =

𝑣𝑣
(1−IoU)+𝑣𝑣

. 

3.4.2 Confidence Loss and Classification Loss 

Binary cross-entropy (BCE) loss is adopted to address class imbalance in medical imaging: 

ℒobj = −�  
𝑆𝑆2

𝑖𝑖=0

�  
𝐵𝐵

𝑗𝑗=0

𝕀𝕀𝑖𝑖𝑖𝑖
obj�𝐶̂𝐶𝑖𝑖

𝑗𝑗log (𝐶𝐶𝑖𝑖
𝑗𝑗) + (1 − 𝐶̂𝐶𝑖𝑖

𝑗𝑗)log (1 − 𝐶𝐶𝑖𝑖
𝑗𝑗)� 

Here, 𝕀𝕀𝑖𝑖𝑖𝑖
obj  indicates whether the 𝑗𝑗-th anchor is responsible for object detection, and 𝐶̂𝐶𝑖𝑖

𝑗𝑗  is the 
ground-truth confidence label. The classification loss ℒcls follows the same formulation, supporting 
multi-label classification (e.g., simultaneous detection of aneurysms and dissections) 

3.5 Model Training Strategies 

The training process incorporated the following strategies to optimize model performance and 
generalization 

3.5.1 Data Augmentation 

CT-specific augmentation techniques were applied including window width/level adjustment (WL 
40–400 HU) to enhance tissue contrast, elastic deformation to simulate anatomical variations, and 
random rotation within ±15° to improve robustness against orientation changes. 

3.5.2 Transfer Learning Implementation 

The ResNet50 backbone was initialized with ImageNet pretrained weights while parameters in 
Stage1–2 layers remained frozen during training. This approach balanced feature extraction capability 
with reduced overfitting risks on limited medical datasets. 

3.5.3 Optimizer Configuration 

The AdamW optimizer was employed with an initial learning rate of 3×10⁻⁴, combined with a cosine 
annealing schedule to dynamically adjust learning rates throughout the training cycle. This configuration 
promoted stable convergence while preventing local minima trapping. 

4. Experiments and Analysis 

4.1 Experimental Setup 

The dataset consisted of 9,856 abdominal CT images sourced from a tertiary hospital’s imaging 
database spanning 2018 to 2022. All aortic dilation regions were independently annotated by three 
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radiologists, with cross-validation ensuring label consistency. The dataset was divided into training 
(7,885 images), validation (985 images), and test sets (986 images) based on patient independence. 
Preprocessing included window-level adjustment (40 HU width, 400 HU level) to enhance vascular 
contrast, pixel normalization to [0, 1], and data augmentation (random rotation ±15°, elastic deformation, 
and Gaussian noise injection). 

Evaluation metrics focused on mean average precision (mAP@0.5), supplemented by parameter 
count, inference speed (FPS), and small-target recall rate (diameter <10 mm). Training utilized four 
NVIDIA Tesla V100 GPUs with the AdamW optimizer, initial learning rate 3e-4, and cosine annealing 
scheduling. Loss weights were set to 0.05 for bounding box regression, 1.0 for objectness, and 0.5 for 
classification. Training ran for 300 epochs with early stopping (patience=20). 

4.2 Ablation Study 

Table 2 compares performance across model configurations. The baseline YOLOv5s achieved 82.17% 
mAP@0.5, 7.2M parameters, and 140 FPS. Replacing the backbone with ResNet50 increased mAP to 
85.72% but raised parameters to 25.6M and reduced FPS to 110. Using BiFPN alone improved mAP to 
83.43% with 8.9M parameters and 125 FPS. The combined model (ResNet50+BiFPN) achieved the 
highest mAP@0.5 (88.79%), with 28.9M parameters and 95 FPS. 

Table 2 Comparison of Performance Across Different Model Configurations 

Model 

Configuration 

mAP@0.5 

(%) 

Params 

(M) 

FPS Small-Target 

Recall (%) 

False Positives 

(FPPI) 

Baseline 

(YOLOv5s) 

82.17 7.2 140 

 

63.2 1.8 

YOLOv5s + 

ResNet50 

85.72 25.6 110 

 

72.1 1.5 

YOLOv5s 

+BiFPN 

83.43 8.9 125 

 

67.8 1.6 

Combined Model 

(Ours) 

88.79 28.9 95 

 

82.5 1.2 

4.3 Results Analysis 

The ResNet50 backbone significantly enhanced feature extraction for subtle vascular structures. Its 
deep residual blocks preserved low-contrast texture details via skip connections, improving calcified 
plaque detection accuracy by 28%. Transfer learning from ImageNet pretrained weights accelerated 
convergence, reducing training loss 17% faster than the baseline. However, ResNet50’s computational 
complexity increased parameters by 256% and lowered FPS by 21.4%. 

BiFPN’s dynamic weighting optimized multi-scale fusion. The 80×80 feature map’s contribution rose 
from 48% in PANet to 64%, enhancing small-branch localization. Bidirectional pathways corrected 
positional deviations at aortic bifurcations, increasing mean bounding box IoU by 0.09. Despite adding 
1.7M parameters, BiFPN maintained 125 FPS through computational optimization. 

The combined model achieved optimal mAP and small-target recall, demonstrating ResNet50 and 
BiFPN’s synergy. However, its 28.9M parameters and 95 FPS may limit deployment in resource-
constrained scenarios. Further analysis revealed limitations in detecting 极小 lesions (recall 54.3% for 
targets <3 mm) and reduced accuracy for saccular aneurysms (6.8% drop), reflecting morphological 
generalization gaps. 

The introduction of the ResNet50 backbone network significantly enhanced the model's ability to 
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extract subtle features of the vessel wall. The deep residual modules, through skip connections, preserved 
the original texture information in low-contrast areas, improving calcified plaque detection accuracy by 
28%. Additionally, the transfer learning from ImageNet pre-trained weights accelerated model 
convergence, with the training loss decreasing 17% faster than the baseline model. However, the high 
computational complexity of ResNet50 led to a 256% increase in the number of parameters and a 21.4% 
decrease in inference speed. 

The dynamic weighting mechanism of the BiFPN neck network optimized multi-scale feature fusion 
efficiency. Experimental results show that the weight ratio of the 80×80 feature map increased from 48% 
in PANet to 64%, enhancing the localization ability for small vascular branches. The bidirectional path 
design corrected the localization bias in the aortic bifurcation area, improving the mean IoU of the 
bounding box by 0.09. Although BiFPN added 1.7M parameters, its computational optimization resulted 
in only a 10.7% reduction in inference speed. 

The combined improved model achieved the best performance in both mAP and small target recall, 
validating the synergistic effect of ResNet50 and BiFPN. However, its high parameter count and 
computational cost, with 28.9M parameters and 95 FPS inference speed, may limit its application in 
resource-constrained scenarios. Further analysis revealed limitations in detecting very small lesions 
(diameter < 3 mm), with a recall rate of only 54.3% for such targets. Additionally, since the dataset 
mainly contains fusiform aortic dilation, the model's detection accuracy for saccular aneurysms decreased 
by 6.8%, reflecting insufficient morphological generalization. 

4.4 Comparative Experiments  

To validate the advancement of the proposed method, this study compares it with mainstream 
detection models (Table 3). 

Table 3 benchmarks against mainstream detectors 

Model mAP@0.5 (%) Params (M) FPS 

Faster R-CNN 79.34 41.5 22 

RetinaNet 80.12 36.8 38 

YOLOv7-tiny 81.05 6.1 160 

Combined Model (Ours) 88.79 28.9 95 

Faster R-CNN and RetinaNet yielded lower mAP@0.5 (79.34% and 80.12%) with significantly 
slower inference. While YOLOv7-tiny achieved 160 FPS, its mAP@0.5 (81.05%) trailed the combined 
model by 7.74%, highlighting our balance of accuracy and speed. 

5. Conclusion 

This study successfully improved the YOLOv5 model for detecting aortic dilation in CT images by 
addressing key challenges in feature extraction and multi-scale fusion. The introduction of ResNet50 as 
the backbone network significantly enhanced the model’s ability to capture fine-grained details, 
particularly in low-contrast regions such as calcified plaques, resulting in a 28% increase in detection 
accuracy. Additionally, the adoption of a dynamically weighted BiFPN for feature fusion addressed the 
multi-scale nature of vascular structures, improving the recall rate for small lesions by 19.3%. 

Experimental results demonstrated that the combined ResNet50 + BiFPN model achieved a notable 
88.79% mAP@0.5, surpassing the baseline YOLOv5 model by 6.62%. Furthermore, the combined 
approach showed excellent performance in small-scale lesion detection, with a recall rate of 82.5% for 
lesions with diameters under 10mm. While the model's parameter count increased significantly, resulting 
in a 21.4% decrease in inference speed, it maintained real-time performance, making it suitable for 
clinical applications with sufficient computational resources. 

Despite its advancements, the model still faces limitations in detecting very small lesions (<3 mm) 
and saccular aneurysms, which highlights the need for further refinement in handling diverse 
morphological variations. Future work could explore additional strategies for optimizing the model's 
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efficiency and expanding its generalization capability to handle a broader range of vascular anomalies. 

Overall, the proposed model offers a promising solution for the automated detection of aortic dilation 
in CT images, providing a foundation for further improvements in medical imaging applications. 
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