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Abstract: In the era of data intelligence, Natural Language to SQL (NL2SQL) technology serves as a 
core interface for human-machine data interaction, making its performance optimization in multi-turn 
Chinese dialogue scenarios highly valuable for research. In addressing the issue where reference 
resolution and semantic omission in the Chinese context can lead to gaps in understanding user intent, 
this paper proposes a model, RW-T5, integrated with a semantic rewriting mechanism. This model is 
based on the pre-trained T5 architecture and utilizes hierarchical modeling of dialogue history along 
with turn-aware encoding to accurately parse semantic unit segmentation and temporal dependencies 
in multi-turn interactions. It features an innovative design for a global context injection and 
bidirectional cross-attention fusion module, enabling the capture of both the overall semantic focus 
and fine-grained word-level semantic details. Utilizing a sequence optimization strategy based on 
multi-dimensional semantic feature fusion, the model effectively performs explicit resolution of implicit 
reference relationships and logical completion of omitted semantics in multi-turn dialogues, providing 
a semantically complete and structurally standardized input for subsequent SQL statement generation. 
Experimental validation on the large-scale Chinese multi-turn dialogue benchmark dataset, CHASE, 
shows that this model significantly outperforms other advanced NL2SQL parsing methods, fully 
validating the effectiveness of the dynamic semantic rewriting mechanism and hierarchical modeling 
approach, and offering an effective solution for the engineering implementation of intelligent data 
interaction systems in Chinese multi-turn dialogue scenarios. 

Keywords: Natural Language Processing; Multi-Turn Dialogue Understanding; Semantic Rewriting; 
NL2SQL 

1. Introduction 

In the digital age, data has become an important basis for decision-making in enterprises and 
organizations. As the amount of data continues to grow and data structures become increasingly 
complex, efficiently extracting valuable information from massive data sets has become a key issue. 
Traditional database querying methods rely on Structured Query Language (SQL); however, the 
complexity of SQL syntax makes it difficult for non-technical users to use it directly for data queries. 
Natural Language to SQL (NL2SQL) technology has emerged to address this challenge, aiming to 
convert users' natural language queries into corresponding SQL statements, thereby enabling natural 
interaction between users and databases, lowering the barriers to data querying, and improving data 
utilization efficiency.[1] 

NL2SQL technology in multi-turn dialogue scenarios further expands the flexibility of user 
interactions with databases. In complex data query requirements, users often find it challenging to 
express all their intents clearly in a single turn. Multi-turn dialogue allows users to gradually refine 
their query requirements; the system generates accurate SQL queries based on each user input and the 
previous dialogue history.[2] For example, in the context of analyzing enterprise sales data, a user may 
first ask, "What was the total sales amount last month?" and then follow up with, "What is the sales 
proportion for each region?" Through multi-turn dialogue, the system can better understand the user's 
complex needs and generate the corresponding SQL queries to retrieve accurate data. 

However, NL2SQL technology in the Chinese context faces numerous challenges. The semantic 
ambiguity in Chinese means that the same word or phrase can have different meanings in different 
contexts; for example, “apple” can refer to either the fruit or Apple Inc. This complicates semantic 
understanding and SQL generation. The issue of reference resolution is also prominent in Chinese; in 
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multi-turn dialogues, users may use pronouns to refer to entities previously mentioned, requiring the 
system to accurately identify these reference relationships to generate correct SQL queries. The context 
dependency in multi-turn dialogues requires the system to effectively integrate historical dialogue 
information to understand the user's coherent intent, yet existing methods often suffer from information 
loss or insufficient integration when handling contextual information. 

Semantic rewriting technology offers a new approach to address these issues. Semantic rewriting 
dynamically modifies and optimizes the semantic representation of user queries, allowing for better 
capture of the user's true intent and disambiguation of semantics. In multi-turn dialogues, semantic 
rewriting can adjust the semantic representation of the current turn based on contextual information, 
ensuring that the generated SQL aligns more closely with the user's overall needs. Therefore, 
researching multi-turn Chinese NL2SQL methods based on semantic rewriting has significant 
theoretical and practical importance, with the potential to enhance the accuracy and robustness of SQL 
generation in multi-turn interactions and advance the development of natural language and database 
interaction technologies. 

To address the aforementioned issues, we propose the RW-T5 model, which is based on semantic 
rewriting for multi-turn Chinese NL2SQL generation. By dynamically calculating the semantic weights 
of each dialogue turn, the model achieves hierarchical aggregation of key information from historical 
dialogue, emphasizing the core context. It further captures semantic associations between turns through 
cross-turn semantic alignment, addressing the unique challenges of word order flexibility and polysemy 
in Chinese. By combining Conditional Random Fields (CRF) for sequence labeling optimization, the 
model explicitly completes ambiguous references and omitted expressions into specific semantics, 
providing precise semantic input for subsequent SQL generation and significantly improving the 
semantic completeness and intent resolution accuracy of multi-turn dialogues. 

2. Model Design 

2.1 Model Overview 

 

Figure 1 Model Architecture 

The architecture of the multi-turn Chinese NL2SQL method based on semantic rewriting proposed 
in this paper is shown in Figure 1. It is based on the mT5 [3] model and is divided into four stages: 
"Dialogue Encoding – Semantic Parsing – Dynamic Rewriting – Constraint Decoding." The aim is to 
effectively handle natural language queries in multi-turn dialogues and accurately convert them into 
SQL statements. 

First, a pre-trained language model is used to encode the input data, such as natural language 
questions, serializing different data items with delimiters. Secondly, a semantic parsing module is 
introduced into the model to analyze the encoded semantic vectors using syntactic analysis techniques. 
This module dynamically evaluates the semantic importance of each turn in the dialogue by calculating 
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turn weights to highlight key contextual information, achieving hierarchical aggregation of the core 
semantics of multi-turn dialogues and constructing a cross-turn semantic interaction matrix to capture 
the semantic associations between historical dialogues and the current statement, further enhancing the 
model's ability to understand cross-turn dependencies. Next, a dynamic rewriting module is introduced, 
which maps contextual semantic features and the features of the current statement into a unified 
semantic space. Through multi-dimensional similarity measurements, the module accurately assesses 
the semantic correlation between the two, providing a quantitative basis for semantic completion. 
Finally, decoding is performed in conjunction with relevant decoding strategies to generate SQL 
statements in the specified format. The following sections will provide a detailed introduction to each 
module. 

2.2 Dialogue Coding 

The context encoding module employs the encoder strategy of the mT5 model to fully capture the 
complex information in multi-turn dialogues. In practical applications, the historical dialogue sequence 
contains the query intentions gradually expressed by the user during multi-turn interactions, as well as 
the SQL query statements obtained in previous turns. The current query represents the specific question 
posed by the user in this turn, while the database schema (including table names, column names, data 
types, etc.) provides structural information for the query. These pieces of information are input into a 
hierarchical encoder, where the historical dialogue sequence is first encoded. Using a self-attention 
mechanism, the model can automatically learn the relationships between different dialogue turns, 
capturing topic shifts and continuities. For the current query, it is transformed into a semantic vector so 
that it resides in the same semantic space as the encoded vectors of the historical dialogues. The 
information from the database schema is encoded into vector representations, which are then fused with 
the encoded vectors of the historical dialogues and the current query. Ultimately, we obtain the 
encoded vectors corresponding to these inputs. 

2.3 Semantic Parsing 

After encoding, we obtain the encoded vectors of the historical dialogue sequences and the encoded 
vector of the current incomplete statement, where },,,,{ 1321i −⋅⋅⋅⋅= nhhhhh represents the dialogue 

turn, nh Li is the turn length, and i is the hidden layer dimension. We then perform average pooling on 

each historical turn to obtain the historical turn vectors davg
i Rh ∈ , which are then weighted and fused 

using an attention mechanism: 
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The query vector avg
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, retrieving relevant semantics from the context through cross-attention: 
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),,(2 VKQenhancedcurctx CWCWWXAttentionX =                                    (4) 

Calculate the impact of the current utterance on the context in reverse and filter key segments: 

),,( '''
2 VenhancedKenhancedQctxcur WXWXCWAttentionX =                               (5) 

Subsequently, the results of the bidirectional attention are fused using dynamic gating signals, and a 
residual connection with the original representation is established to obtain the feature representation of 
the current incomplete statement: 

]);[( 22 ctxcurcurctxg CXWg σ=                                                    (6) 
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Among them, N d
finalX R ×∈  

To further enhance the measurement capability of the semantic association between the context and 
the current statement, a similarity calculation module based on a twin network is introduced. This 
module inputs the current statement features finalX , after being fused through cross-attention, and the 

global context vector gloabalc into the two branches of the twin network [4], forming a contrastive 
learning input pair: 

, ,( ) [1, ]context i gloabal if = Siamese c i M∈                                            (8) 

, , ) [1, ](current j final jf = Siamese X j N∈                                           (9) 

The twin network includes convolutional layers and fully connected layers, learning the similarity 
measure of semantic features through a parameter-sharing mechanism. The similarity calculation 
employs a multidimensional fusion strategy, integrating cosine similarity, dot product similarity, and 
the nonlinear similarity computed by the multilayer perceptron (MLP) to ultimately obtain the 
similarity matrix ,i jF : 

, 1 context,i current,j 2 context,i current,j 3 context,i current,jcos( , ) dot( , ) MLP( , )i jF f f f f f fγ γ γ= ⋅ + ⋅ + ⋅   (10) 

Among them, 1γ , 1γ , and 3γ  are learnable weight coefficients used to dynamically adjust the 
contributions of different similarity calculation methods. Cosine similarity measures the directional 
consistency of feature vectors, while dot product similarity reflects the magnitude correlation of feature 
vectors. The MLP captures nonlinear semantic relationships. Through multidimensional fusion, this 
module can measure the semantic correlations between context and the current statement from different 
perspectives, providing a more comprehensive decision-making basis for subsequent semantic area 
localization and completion.[5] 

2.4 Dynamic Rewriting 

In the semantic rewriting task, the core function of dynamic rewriting is to locate and identify the 
areas in the input text that require semantic modifications. This is achieved through an improved U-Net 
[6] architecture combined with Conditional Random Field (CRF) sequence optimization, facilitating 
the precise localization of semantic modification areas and the efficient prediction of editing types. 

The original U-Net employs an encoder-decoder structure with skip connections to merge multi-
scale features, but traditional downsampling operations can lead to a loss of spatial resolution, 
negatively impacting the capture of detail information. To address this, an improved U-Net architecture 
is adopted, incorporating dilated convolutional blocks and dense connection blocks to enhance the 
accuracy and efficiency of semantic area segmentation. Additionally, the introduction of dense 
connection blocks enables inter-layer feature concatenation, enhancing feature reuse capabilities. 
During the decoding phase of the improved U-Net, bilinear interpolation upsampling and convolution 
operations are used to progressively restore the resolution of the feature maps. Finally, a feedforward 
neural network maps each feature vector to a probability distribution over three editing types (insertion, 
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replacement, retention), generating a probability matrix Y . 

To further leverage the sequential dependencies between editing types (such as specific entity 
vocabulary being more likely to follow an "insertion" operation), a Conditional Random Field (CRF) 
layer is introduced for sequence constraint optimization. The goal of the CRF layer is to solve for the 

label distribution 
*Y  that maximizes probability given the input matrix X . Its energy function is 

defined as follows: 
* arg min ( , )Y E= Y XY                                                     (11) 
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The unary potential function ( )u iyψ  is computed using Equation 11, which measures the 

compatibility between a single position's label iy  and the observed data. This is done by reinforcing 
the selection of high-confidence labels through negative log probabilities. In Equation 12, the pairwise 
potential function ( , )p i jy yψ uses a Gaussian kernel function to measure the consistency between 
adjacent labels: 
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Here, ip and jp  represent the character position coordinates, and 1θ =  is the width parameter of 
the kernel function. This function enhances the local smoothness of segmentation results by penalizing 
inconsistent labels at non-continuous positions. 

Based on the predicted editing type results from the segmentation layer, the semantic rewriting 
process is divided into two key steps: first, using a connected region segmentation algorithm (such as 
4-neighborhood connectivity detection) to identify continuous editing areas, generating a minimal 
bounding rectangle to locate the text segments that need modification; second, generating the rewritten 
statement '

nh  based on the editing type labels (e.g., "insertion" corresponds to supplementing referring 
entities, while "replacement" corresponds to disambiguation correction), in combination with the 
contextual semantics. 

2.5 Constraint Decoding 

The SQL statement generation decoding is based on the core modules of the mT5 model, such as 
masked self-attention, cross-attention, and feedforward networks. By introducing constraint logic and a 
dynamic syntax monitoring mechanism, a hierarchical constraint decoding framework is constructed to 
ensure that the generated SQL statements possess both syntactic correctness and consistency with the 
database schema. The specific mechanisms include: 

In the masked self-attention module, a clause type bias matrix is overlaid, dynamically adjusting the 
attention weight distribution based on the semantic type of the currently generated clause (e.g., 
SELECT, FROM, WHERE) [7], guiding the model to focus on the semantic space of the current clause. 
The cross-attention module introduces a schema-enhanced bias generated from database schema 
embeddings, strengthening the semantic association with the corresponding nodes in the database 
schema when generating table names or column names, thus reducing field reference errors.A finite 
state machine is integrated to construct a state transition table that predefines a valid order for clause 
generation and updates the syntax state in real-time during decoding, dynamically filtering out illegal 
token generations. Building on the traditional cross-entropy loss, additional losses for syntax violations 
and schema alignment are introduced, forming a multi-objective optimization system. This dual 
constraint approach from both the generation process and loss function ensures the legality and 
accuracy of SQL statements. 
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3. Experiments and Analysis 

3.1 Experimental Setup 

3.1.1 Dataset 

CHASE [8] is a large-scale dataset designed for the Chinese multi-turn dialogue NL2SQL task, 
consisting of 5,459 question sequences, 280 databases, and 17,940 annotated data entries. It focuses on 
context-dependent complex queries, with the proportion of context-dependent questions reaching 
64.7%, significantly surpassing the English datasets SParC (52.5%) and CoSQL (31.8%). Additionally, 
the SQL complexity distribution is more balanced, with simple queries constituting 28% of the 
dataset.The dataset is divided into CHASE-C (a manually constructed high-difficulty subset, with 
"difficult" and "very difficult" SQL queries making up over 44%) and CHASE-T (based on improved 
translations from SParC). The annotation system covers multi-dimensional information such as schema 
linking methods and types of context dependency. The database schema is stored in JSON format, 
including table structures and primary-foreign key relationships. 

3.1.2 Evaluation Metrics 

To scientifically evaluate the model's performance in the multi-turn Chinese NL2SQL task, this 
study employs Question Matching (QM) and Interaction Matching (IM) as evaluation metrics. QM is 
based on exact matches of SQL clause sets and measures the accuracy of single question parsing, 
counting as correct only when all clauses (SELECT, FROM, WHERE, etc.) are fully consistent with 
the standard SQL. IM assesses the semantic coherence of multi-turn dialogues, requiring that all 
questions in the dialogue satisfy QM=1 to be considered a successful match, effectively testing the 
model's ability to inherit semantics across turns. 

3.2 Comparison of Experimental Results 

The CHASE dataset, as the first large-scale context-aware natural language to SQL dataset aimed at 
the Chinese context in recent years, provides an important benchmark for research in semantic parsing 
in multi-turn dialogue scenarios. This study selected EditSQL [9], IGSQL [10], and RatSQL+Concat 
[11] as comparison models for the experiments. The above models were initially designed primarily for 
English datasets. This study adapted them to accommodate the Chinese language characteristics and 
multi-turn dialogue annotation standards of the CHASE dataset by improving Chinese tokenization 
strategies, adjusting cross-modal semantic alignment mechanisms, and optimizing database schema 
encoding. 

The results of the comparison experiments are shown in Table 1. A thorough analysis of the 
experimental results reveals that the proposed RW-T5 model outperforms all other models across 
various metrics. The EditSQL model focuses on capturing semantic correlations between the current 
turn and historical turns, while IGSQL emphasizes encoding historical database schema items. In 
contrast, the RW-T5 model preprocesses the input data through semantic rewriting, allowing the model 
to better perceive semantic changes across turns. 

Table 1 Comparison of Experimental Results 

Model 
CHASE CHASE-C CHASE-T 

Dev Test Dev Test Dev 
QM IM QM IM QM IM QM IM QM IM 

EditSQL 37.7 17.4 37.8 14.7 33.6 8.4 32.6 8.7 41.6 21.6 
IGSQL 41.4 20.0 40.4 15.6 31.4 10.8 32.6 9.3 43.3 26.3 
Rat-Con 35.1 14.6 32.5 9.8 24.6 5.4 23.9 4.5 43.7 21.6 
RW-T5 55.6 30.2 50.8 28.4 42.3 25.3 40.8 23.2 54.2 39.1 
In terms of the Interaction Matching (IM) metric, the RW-T5 model significantly outperforms the 

comparison models on the dataset. This is attributed to the RW-T5 model's ability to ensure semantic 
consistency by aligning natural language questions with database schema items, whereas EditSQL and 
IGSQL only encode natural language and database schemas separately. The RW-T5 model represents 
the relationships between question words and schema items and inputs them into the model for unified 
interactive encoding, thereby effectively enhancing the accuracy of semantic processing in multi-turn 
dialogues. 
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Figure 2 QM Values of the Model at Different Difficulty Levels 

To further analyze the effectiveness of the proposed model in handling contextual relevance, the 
QM values of different difficulty SQL statements for each model were compared on the validation set 
of the CHASE dataset. The SQL statements were classified into four levels based on the complexity of 
keywords and SQL structures: simple, medium, difficult, and very difficult. The experimental results 
are shown in Figure 2, indicating that the RW-T5 model outperforms other models across all difficulty 
levels of SQL statements. As the complexity of the SQL statements increases, the difficulty of the 
model's predictions correspondingly rises. Currently, for very difficult SQL statements, the generation 
performance of the model still needs improvement, which remains a significant challenge in this field. 

Table 2 QM Values Across Different Turns 

Model 1 2 3 4 >=5 
EditSQL 55.8 38.1 25.7 19.2 16.1 
IGSQL 59.1 42.3 29.4 24.5 20.5 
Rat-Con 51.4 37.5 24.8 18.4 14.5 
RW-T5 70.5 59.4 51.8 45.7 40.3 

A comparison of the average QM values for each sequence position was also conducted, and the 
experimental results are shown in Table 2. As the number of turns increases, the amount of historical 
information to be considered grows, leading to more complex semantic changes and greater prediction 
difficulty. This fully demonstrates that the semantic processing method proposed in this paper for 
multi-turn NL2SQL problems can generate SQL statements more effectively when there are contextual 
dependencies between turns. 

3.3 Ablation Experiments 

Table 3 Ablation Experiments 

Model Model configuration QM(%) IM(%) 
Baseline Complete model 55.6 30.2 

ExperimentalA Remove the semantic rewrite module 43.9 17.1 
ExperimentalB Use the mT5 decoder 46.1 23.5 
ExperimentalC Remove the semantic rewrite module and use the mT5 decoder 39.5 12.8 
To verify the effectiveness of the core components of the RW-T5 model, this study conducted 

ablation experiments based on the CHASE dataset (which covers scenarios such as single-table, multi-
table JOINs, and nested queries). Four comparative groups were set up focusing on key modules: the 
baseline model includes all core modules, experimental group A removed the semantic rewriting 
module, experimental group B used the decoder from the mT5 model, and experimental group C 
removed both the semantic rewriting module and used the decoder from the mT5 model. The 
experimental results show that the baseline model significantly outperforms the ablation models in 
terms of Question Matching (QM) and Interaction Matching (IM). The semantic rewriting module 
addresses the ambiguity in natural language, while the constraint decoder ensures the syntactical 
validity of the generated SQL. The functional modules exhibit a significant synergistic enhancement 
effect, where the absence of any module leads to a notable decline in model performance, thereby 
validating the indispensability of each component in the multi-turn Chinese NL2SQL task and 
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providing a clear technical pathway for subsequent model optimization. (Table 3) 

4. Conclusion and Outlook 

This paper presents the RW-T5 model, which effectively addresses the problems of reference 
resolution and complex schema parsing in Chinese multi-turn dialogues through hierarchical semantic 
modeling and schema parsing techniques. Experimental results demonstrate that the model has 
achieved a new technical level in multi-turn semantic coherence and complex SQL generation 
capabilities, while the engineering system has validated its practical application value. Future research 
will focus on the following directions: (1) optimizing the logical reasoning process of SQL generation 
using reinforcement learning; (2) exploring fusion modeling methods for cross-modal data (such as 
charts and voice); and (3) researching few-shot learning frameworks to reduce the model's dependence 
on large-scale labeled data. These studies will further promote the deep application of NL2SQL 
technology in fields such as intelligent data platforms and business intelligence analytics. 
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