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Abstract: An early prediction of Acute Respiratory Distress Syndrome (ARDS) in patients with severe 
trauma based on clinical data can help nurse clinicians screen high-risk groups that would develop 
ARDS. To achieve this purpose, machine learning methods were adopted and tested. This retrospective 
cohort study was performed on the data of the severe trauma patients admitted to the ICU of the 
affiliated hospital of Zunyi Medical University from September 2021 to November 2022. The required 
data for construing the prediction models was collected from medical records of these patients. 
Univariate logistic regression was used first to achieve the purpose of reducing the data dimension. 
Then, twelve machine learning methods classified into four categories, which were neural network, 
logistic regression (LR), decision tree (DT) and support vector machine (SVM), were adopted in the 
early prediction of ARDS in patients with severe trauma. Internal cross-validation was conducted in 50 
numerical experiments, and in each test, a training set consisted of 80% of the samples that were 
randomly selected, and the remaining 20% of the samples were in a validation data set. In the internal 
validation, 550 patients were involved. 250 cases developed ARDS within one week and 300 cases had 
no ARDS. Machine learning methods were also tested in external validation with 100 trauma patients 
who developed ARDS within one week and 101 controls. Based on the test results, the optimal machine 
learning model was investigated. Then, significant predictors associated with the development of ARDS 
were further examined with the help of SHAP (SHapley Additive exPlanations) analysis and causal 
inference. Tree models showed high discrimination in both internal and external validation. The model 
trained by the AdaBoost + DT (decision tree) algorithm had the most balanced results, and showed 
that AUC (area under the curve), accuracy, precision, specificity and sensitivity were 0.915, 0.833, 
0.799, 0.823, 0.845, respectively, in the cross validation, and 0.851, 0.751, 0.734, 0.710, 0.793, 
respectively, in the external validation. The findings indicated that Glasgow Coma Scale (GCS), Injury 
Severity Score (ISS), Total protein (TP), and blood glucose (Glu) were the most important relevant 
factors for the ARDS prediction. The use of collected clinical data to predict the development of ARDS 
in patients with severe trauma has a certain value. Tree models have the best discrimination power in 
predicting ARDS after major trauma. Essential predictors at least contain GCS, ISS, TP, and Glu. 
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1. Introduction 

1.1 Background 

Severe trauma (Injury Severity Score (ISS)≥16) is a leading cause of death among young people in 
both developed and developing countries, as a result of traffic accidents and work accidents[1, 2]. Acute 
injuries can cause secondary tissue damage due to the ischemia-reperfusion injury, as well as a 
systemic inflammatory response and extensive damage to pulmonary capillary endothelial cells and 
pulmonary epithelial cells, and eventually cause the development of Acute Respiratory Distress 
Syndrome (ARDS) [3, 4]. So, one of the most common secondary diseases of severe trauma is ARDS. 
The statistics showed that the prevalence of traumatic ARDS ranged between 25% and 50% [5, 6], and 
the incidence of ARDS was approximately 10.4% in patients in the intensive care unit (ICU), where 
traumatic patients account for 6.5% [7, 8]. Severe trauma patients with ARDS also have a high mortality 
rate, with a nearly 40% chance of dying [8, 9]. Early identification of high-risk patient groups of ARDS 
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after severe trauma is critical for timely supportive treatment and nursing, and it can help reduce the 
incidence of the development of ARDS and further improve the medical prognosis of trauma patients. 

1.2 Related works 

Currently, risk factors for the development of ARDS in trauma patients have been studied 
extensively, but only a few works involve the early prediction of ARDS in trauma patients. 

Investigations of risk factors for the development of ARDS in trauma patients could be found in the 
literature [6, 9-26]. In [9-12], risk factors for ARDS after trauma were studied in patients with different 
injury mechanisms. In [6, 20-21], the problem of determining risk factors for ARDS was mainly discussed 
in patients with multiple injuries. In [15-16], associations between the development of ARDS in trauma 
patients and the two risk factors, sex and acute blood transfusion, were surveyed. Mortality in trauma 
patients complicated with ARDS and its relevant factors were also studied in [24-29]. Based on the 
literature review, it was found that risk factors for ARDS after severe trauma included APACHE(Acute 
Physiology and Chronic Health Evaluation)-II score, ISS, Glasgow Coma Scale (GCS), massive 
transfusion, sex, admission hypotension, infection, pneumonia, pulmonary contusion, flail chest injury, 
age, admission tachycardia, history of cardiopulmonary and hematologic disease, preexisting vascular 
and respiratory diseases, surgical operation, blood glucose, chronic alcohol use, diabetes mellitus, 
smoking, sepsis, use of total parenteral nutrition, shock, gastrointestinal hemorrhage, disseminated 
intravascular coagulation, etc. The validation of biomarkers in the diagnosis and prediction of ARDS in 
trauma patients was also investigated in [13]. 

To obtain an early clinical prediction result for the development of ARDS in trauma patients based 
on risk factors, multivariate logistic regression had been adopted [20, 22]. However, far few studies 
discussed modern machine learning algorithms in the prediction of ARDS after trauma. Some works 
discussed the prediction of ARDS in critical patients using machine learning algorithms [30-31], but did 
not focus on trauma patients. Various intelligent machine learning algorithms were used to assist in the 
prediction of ARDS based on clinical records and biological examinations in patients with diseases 
such as Corona Virus Disease 2019 (COVID-19) and severe acute pancreatitis [32-34]. To the authors' 
knowledge, only one ARDS prediction study based on modern machine learning technology could be 
found in patients after severe trauma [35]. In this work, deep learning-based image processing 
technology was adopted, and this work did not cover specific clinical records and biological 
examinations. An early prediction model of ARDS in patients with severe trauma based on clinical 
records and biological examinations is an important aid to the diagnosis that relies only on imaging 
examinations. And this was the main research objective of this paper. 

1.3 Researches in this study 

Machine learning technology can be used to analyze known information comprehensively, and due 
to the introduction of a penalty function with regularization, many machine learning algorithms can 
effectively reduce the influence of collinearity. Therefore, machine learning algorithms are powerful 
technical means for data analysis and the prediction of clinical outcomes [36]. The predictability of 
ARDS in trauma patients can be observed in machine learning models, and the impacts of different 
relevant factors on prediction results can also be explored further. In this research, four categories of 
machine learning methods, neural network, logistic regression (LR), decision tree (DT), and support 
vector machine (SVM), were adopted to predict whether patients with severe trauma would develop 
ARDS within one week after admission to the hospital. These methods included random forest (RF), 
AdaBoost + DT, Gradient Boosting Decision Tree (GBDT), eXtreme Gradient Boosting (XGBoost), 
LR, Bagging + LR, AdaBoost + LR, SVM, Bagging + SVM, AdaBoost + SVM, multilayer perception 
(MLP), and Bagging + MLP, specifically [37-38]. Subsequently, the associations between predictors and 
ARDS in trauma patients were further discussed based on SHAP (SHapley Additive exPlanations) 
analysis [39] and causal inference [40, 41]. 

2. Materials and Methods 

2.1 Study design 

Potential predictors from the literature and expert opinions, and also with clinical accessibility, were 
comprehensively considered and collected. Patients were eligible if they were at least 18 years old, 
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were admitted to the hospital within 24 hours after trauma and had 

Table 1 Clinical data collected from severe trauma patients 

Indicators Not ARDS(n=300) ARDS(n=250) P-value 
General information    

Age (year) 49(39, 57) 53(46, 57) 0.001 
Male sex 217(72.30%) 198(79.20%) 0.062 
Smoking    

No 210(70.00%) 146(58.40%) 0.005 
Yes 90(30.00%) 104(41.6%)  

Drinking   0.035 
No 216(72.00%) 159(63.60%)  
Yes 84(28.00%) 91(36.40%)  

Injury mechanism   0.421 
Traffic accident 138(46.00%) 114(45.60%)  

Fall 74(24.67%) 66(26.40%)  
Other 88(29.33%) 70(28.00%)  

Consultation time window after 
trauma (CTWAT) (hour) 5(3, 7) 5(3, 8) 0.642 

Systolic blood pressure (SBP) 
(mmhg) 122.00(109.50, 137.00) 117.00(97.00, 128.00) <0.001 

Diastolic blood pressure (DBP) 
(mmhg) 77.00(69.00, 85.00) 72.0(63.00, 81.00) <0.001 

Heart rate (times/min) 87.00(78.00, 98.00) 90.00(80.00, 105.00) 0.004 
Respiratory rate (times/min) 20(19, 21) 20(19, 22) 0.010 

Laboratory examinations    
Oxygen saturation (SaO2) (%) 98(97, 98) 98(96, 98) 0.310 
White blood cell count (WBC) 

(109/L) 13.78(11.00, 18.29) 15.76(12.03, 19.74) 0.003 

Granulocyte (Gran) (109/L) 12.07(8.88, 16.15) 12.94(10.35, 17.13) 0.006 
Prothrombin time (PT) (s) 10.70(9.85, 12.10) 11.00(10.40, 12.70) <0.001 

Activated partial thromboplastin 
time (APTT) (s) 26.15(23.65, 30.40) 25.30(23.70, 29.35) 0.347 

Fibrinogen (FIB) (g/L) 2.37(1.90, 2.90) 2.13(1.64, 2.60) <0.001 
Hematocrit (HCT) (%) 39(34, 42) 36(31, 40) <0.001(0.232) 

Platelet (PLT) 201.37±68.71 188.17±68.19 0.035 
Blood potassium (mmol/L) 3.80(3.53, 4.11) 3.90(3.58, 4.23) 0.073 

Blood sodium (mmol/L) 139.04(137.80, 140.93) 140.32(138.72, 142.00) <0.001 
Cholinesterase (ChE) (K/uL) 7.0(5.8, 8.3) 6.4(4.9, 7.3) <0.001(0.204) 

Total protein (TP) (g/L) 61.50(56.46, 66.15) 56.31(49.30, 62.00) <0.001 
Albumin (ALB) (g/L) 38.10(34.80, 41.00) 35.20(30.90, 39.10) <0.001(0.633) 

Prealbumin (PA) (mg/L) 216.5±58.4 204.0±54.2 0.010 
Serum creatinine (SCR) 

(µmol/L) 70.00(60.50, 82.50) 75.50(63.00,89.00) 0.002 

Serum bicarbonate (HCO3) 
(mmol/L) 20.98±3.36 20.83±3.28 0.584 

Blood glucose (Glu) (mmol/L) 7.07(6.05, 8.20) 8.28(6.90, 10.26) <0.001 
Creatine kinase (CK) (U/L) 449.00(231.00, 890.00) 621.98(232.74, 1587.54) 0.001 

Creatine kinase isoenzyme MB 
(CK-MB) (U/L) 32(19, 49) 41(25, 67) 0.001(0.347) 

Treatments    
Blood transfusion   <0.001 

No 192(64.00%) 116(46.40%)  
Yes 108(36.00%) 134(53.60%)  

Emergency operation   0.005 
No 202(67.33%) 137(54.80%)  
Yes 98(32.67%) 113(45.20%)  

Underlying diseases    
Hypertension   0.269 

No 276(92.00%) 236(94.40%)  
Yes 24(8.00%) 14(5.60%)  
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Table 1 Continued 

Indicators Not ARDS(n=300) ARDS(n=250) P-value 
Diabetes mellitus   0.534 

No 286(95.30%) 241(96.40%)  
Yes 14(4.70%) 9(3.6%)  

Initial CT scans    
Acute lung injury   <0.001 

No 149(49.67%) 72(28.80%)  
A single side 15(5.00%) 41(14.40%)  
Both sides 136(45.33%) 137(54.80%)  

Pneumohemothorax (Pne-thorax)   <0.001 
No 236(78.67%) 198(79.20%)  

A single side 29(9.67%) 46(18.40%)  
Both sides 35(11.67%) 6(2.40%)  

Disease severity    
Abbreviated Injury Score (AIS)    

AIS - Head/Neck 0(0, 3) 0(0, 2) 0.785 
AIS-APC (abdomen and pelvic cavity) 0(0, 2) 0(2, 3) <0.001 

AIS- Thorax 4(3, 4) 4(3, 4) 0.004 
AIS - Extremities 2(0, 3) 2(1, 2) 0.750 
AIS -Body surface 1(0, 1) 1(0, 1) 0.352 

AIS- Face 0(0, 1) 0(0, 0) 0.048 
ISS 24(20, 27) 29(24, 32) <0.001 

GCS 15(15, 15) 14(12, 15) <0.001 
APACHE-II Score 6(4, 8) 8(6, 11) <0.001 

Shock   <0.001 
No 267(89.00%) 170(68.00%)  
Yes 33(11.00%) 80(32.00%)  

An ISS score of at least 16, as well as stayed in the hospital at least 72 hours. Patients who had 
incomplete clinical data, patients with ARDS at admission, patients with chronic obstructive pulmonary 
disease and chronic heart failure, patients with a stay of less than 24 hours and patients who died before 
developing ARDS were excluded from the study. 

The primary dataset for this retrospective cohort study included 550 patients with severe traumatic 
injuries. 250 patients developed ARDS within one week after admission to the hospital, and 300 
patients did not develop ARDS. All patients were from the affiliated hospital of Zunyi Medical 
University from September 2021 to April 2022. The diagnosis of ARDS was according to the Berlin 
definition [42]. Table 1 details the indicators of these patients. 

A total of 100 trauma patients who developed ARDS within one week and 101 controls who did not 
develop Ards were included additionally in the external validation dataset. These cases were collected 
from July 2022 to December 2022, and also from the affiliated hospital of Zunyi Medical University. 

2.2 Machine learning Models 

Algorithms including RF, AdaBoost + DT, GBDT, XGBoost, LR, Bagging + LR, AdaBoost + LR, 
SVM, Bagging + SVM, AdaBoost + SVM, Multilayer Perception (MLP) and Bagging + MLP were 
adopted. In this study, the base classifier of the ensemble algorithms of GBDT, RF, and XGBoost was 
DT. Machine learning models were performed using the numerical simulation tool, Python (version 
3.8.1) + Scikit-learn (version 1.1.3). 

To evaluate the overall performance of prediction models, the prediction accuracy and AUC values 
were first considered, and then precisions, specificities and sensitivities were observed. AUC value 
(area under the curve) is the area under the Receiver Operating Characteristic (ROC) curve, and the 
following equations are the definitions of accuracy, precision, sensitivity and specificity. 

 Accuracy=(tp+tn)/(tp+fp+tn+fn)                                                     (1) 

 Precision=(tp)/(tp+fp)                                                              (2) 

 Sensitivity=(tp)/(tp+fn)                                                              (3) 

 Specificity=(tn)/(tn+fp)                                                              (4) 
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Where, tp represents the number of actual positive cases that are predicted as positive results; tn 
represents the number of actually negative cases that are predicted as negative results; fn represents the 
number of actually positive cases that are predicted as negative results; and fp represents the number of 
actually negative cases that are predicted as positive results. 

2.3 Data processing procedures  

Theoretically, if there are sufficient samples, in machine learning methods, the influences and 
weights of irrelevant and low correlation factors can be lowered automatically. However, in view of the 
fact that the sample size is often limited, reducing the data dimension is necessary to reduce the impact 
of overfitting. Univariate logistic regression analysis was first used to select valuable variables. The 
variables that had a statistically significant relationship with the outcome “ARDS occurred during the 
observation period” were the selected variables. 

The next step is the construction and validation of the ARDS prediction models. The test results of 
different prediction models were compared. Variable roles were also analyzed based on SHAP analysis 
and casual inference. 

Details of data processing are shown in the steps detailed below and in Figure 1. 

Step 1: This was a data collection and collation step. As most of the missing data in this study were 
missing observations of some continuous attributes, mean and mode values were preferentially used to 
fill in the missing pieces. For common physical signs, such as body temperature and arteria ph, the 
missing pieces were normal values by default. 

Step 2: Univariate logistic regression was used to select valuable variables in this step. The outcome 
‘ARDS occurred during the observation period’ was represented by 1, and ‘ARDS did not occur during 
the observation period’ was represented by 0. The collected indicators that were not significantly 
related to ARDS were not considered. 

Step 3: In this step, the data transformation was implemented. Category variables were converted to 
binary codes. Continuous variables and rank variables were normalized as follow: 

min max min=( ) / ( )i ix x x x x− −                                                        (5) 

Step 4: This step is model constructing. In addition to basic classifiers, some ensemble algorithms, 
such as AdaBoost, Bagging, GBDT, RF, and XGBoost were supplemented in this step. The holdout 
cross-validation was used in internal validation, and external validation was also conducted.  

Internal cross-validation was conducted in 50 numerical experiments. And in each test, 80% of the 
samples that were randomly selected were placed in a training set, and the remaining 20% of the 
samples were in a validation data set. In external validation, all the 550 samples used in internal 
validation were used to train a model, and 201 samples in the external validation dataset were used as 
validation data. The performance of different machine learning algorithms was also compared and 
evaluated in this step. 

Step 5: contributions of different predictors were compared using shap analysis. Important 
predictors for the development of ards in patients with severe trauma were analyzed on the basis of 
variable contributions. Casual inference was also adopted to analyze the predictor roles supplementary. 

The general outline of the above steps is shown in Figure 1. 

Data preprocessing 
results

Data collection 
and collation

Valuable variable 
selection Data transformation

Result observation in 
prediction tests

Machine learning methods

  Variable analysisOptimized models and 
important predictors

Further findings 
and discussions

 
Figure 1 Data processing procedures in this paper 
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2.4 Statistical analysis 

The statistical analysis was performed using SPSS (version 19.0). The level of statistical 
significance was set at P<0.05. The Kolmogorov-Smirnov test was used to test the normality of 
continuous variables. To compare the studied variables between the ARDS group and the non-ARDS 
group, the independent t-test was used in the case of normality and the Mann-Whitney U test was used 
in the case of non-normality. For qualitative variables, the Chi-square test or the Fisher test was used. 

Causal inference tests were performed with the help of Python (version 3.8.1) + Microsoft DoWhy 
(version 0.8). In causal inference, three methods, the back-door criterion, the front-door criterion, and 
the instrumental variable analysis, were adopted in causal identifications. The ATE (Average Treatment 
Effect) value was used to evaluate the treatment effect.  

3. Results 

3.1 Valuable variable selection  

The results of the variable selection using univariate logistic regression are shown in Table 2. 
Variables marked with ‘*’ were selected variables. Table 2 indicates that, except for a few cases, most 
variables with significant difference between the two groups of patients also had significant impacts on 
the development of ARDS. Only variables, including HCT, ChE, CK-MB and ALB, had no significant 
correlations. These four variables were evaluated using the Mann-Whitney test in the base-line data. To 
further reduce the data dimension, MAP (mean arterial pressure) was used to integrate the information 
from SBP and DBP, and MAP= (2*DBP+SBP)/3. 

Table 2 Inclusion variables in the ARDS prediction 
Variables Odd ratio 95%CI P-value Variables Odd ratio 95%CI P-value 

Age* 1.019 1.007-1.030 0.002 AIS-Thorax* 1.160 1.021-1.319 0.023 
Smoking* 1.662 1.168-2.364 0.005 AIS-APC * 1.326 1.189-1.479 <0.001 
Drinking* 1.472 1.026-2.110 0.036 ISS* 1.112 1.081-1.144 <0.001 

SBP* 0.982 0.973-0.990 <0.001 GCS* 0.736 0.667-0.812 <0.001 
DBP* 0.974 0.961-0.987 <0.001 APACHE-II score* 1.141 1.094-1.190 <0.001 

Respiratory rate* 1.067 1.007-1.131 0.029 Sex 0.687 0.462-1.021 0.063 
Heart rate* 1.012 1.002-1.023 0.020 Injury mechanism 0.989 0.799-1.224 0.526 

WBC* 1.041 1.012-1.070 0.004 CTWAT 0.976 0.951-1.001 0.065 
Gran* 1.044 1.013-1.075 0.005 SaO2 0.947 0.890-1.008 0.087 
PT* 1.156 1.060-1.261 0.001 APTT 1.007 0.994-1.019 0.285 
FIB* 0.632 0.511-0.780 <0.001 HCT 0.600 0.245-1.472 0.265 
PLT* 0.996 0.994-0.999 0.010 Blood potassium 0.981 0.868-1.110 0.762 

Blood sodium* 1.136 1.068-1.208 <0.001 ChE 0.971 0.917-1.029 0.319 
TP* 0.940 0.921-0.959 <0.001 HCO3 0.986 0.937-1.037 0.583 
PA* 0.996 0.993-0.999 0.010 CK-MB 1.101 0.999-1.004 0.387 

SCR* 1.010 1.003-1.018 0.006 Hypertension 0.682 0.345-1.349 0.272 
Glu* 1.201 1.121-1.287 <0.001 Diabetes mellitus 0.763 0.325-1.793 0.535 
CK* 1.001 1.000-1001 0.001 AIS - Head/Neck 0.987 0.880-1.108 0.827 

Shock* 3.807 2.342-5.964 <0.001 AIS - Extremities 0.984 0.843-1.147 0.835 
Blood transfusion* 2.054 1.458-2.893 <0.001 AIS -Body surface 0.900 0.700-1.158 0.412 

Emergency operation* 1.075 0.747-1.548 0.006 AIS -Face 0.889 0.748-1.055 0.178 
Acute lung injury* 1.143 1.179-1.694 <0.001 ALB 1.001 0.996-1.006 0.640 

Pne-thorax* 1.429 1.099-1.858 0.008     

3.2 Performances of machine learning models 

The parameters of the machine learning algorithms in numerical tests are shown in Table 3. And the 
performance of different machine learning models both in internal and external validation is shown in 
Table 4. In Table 4, the external validation results are also the average values in 50 numerical 
experiments. Prediction models with a standard deviation of 0.000 in the external validation were the 
stable ones. 

The results in Table 4 show that tree models outperform other models. Accuracy, precision, 
sensitivity and specificity could reach 0.833, 0.829, 0.853, and 0.877 respectively. In general, the 
AdaBoost + DT model provided the best results. Compared to the GBDT model, the sensitivity value 
obtained by the AdaBoost + DT model is greater than the specificity value. Therefore, AdaBoost + DT 
was more capable of screening patients who would develop ARDS. It was also found that ensemble 
learning is more adapted to tree models, and ensemble algorithms in LR, SVM and neutral network had 
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no advantages and sometimes even performed worse.  

Table 3 Parameter choices in machine learning models 

Methods Parameters 

RF n_estimators: 120, criterion: ‘entropy’, max_depth: 9, 
min_samples_leaf: 3. 

AdaBoost+DT n_estimators: 120, algorithm: SAMME, max_depth: 9, 
min_samples_leaf: 3. 

GBDT n_estimators: 120, max_depth: 9, min_samples_leaf: 3, 
learning_rate: 0.1. 

XGBoost 

base_score: 0.5, booster: ‘gbtree’, colsample_bylevel: 1, 
colsample_bynode:1, colsample_bytree:1, gamma: 0, learning_rate: 

0.1, max_depth: 9, min_child_weight: 1, n_estimators: 200, 
objective: ‘binary:logistic’, scale_pos_weight: 1. 

LR penalty: l2, tol: 1e-3, C: 1.0, solver: ‘liblinear’, max_iter: 10000. 

Bagging+LR n_estimators: 120, penalty: l2, tol: 1e-3, C: 1.0, solver: ‘liblinear’, 
max_iter: 10000. 

AdaBoost+LR n_estimators: 120, algorithm: ‘SAMME.R’, learning_rate: 0.1, 
penalty: l2, tol: 1e-3, C: 1.0, solver: liblinear, max_iter: 10000. 

SVM C: 1.0, gamma: ‘auto’, kernel: ‘linear’, tol: 1e-3, probability: 
‘True’. 

Bagging+SVM n_estimators: 120, C: 1.0, gamma: ‘auto’, kernel: ‘linear’, tol: 1e-3, 
probability: ‘True’. 

AdaBoost+SVM n_estimators: 120, algorithm: ‘SAMME.R’, learning_rate: 0.1, 
gamma: ‘auto’, kernel: ‘linear’, tol: 1e-3, probability: ‘True’. 

MLP(1 hidden layer) activation: ‘logistic’, solver: ‘adam’, alpha: 1e-2, 
hidden_layer_sizes: 9, learning_rate: ‘constant’, max_iter: 200000. 

Bagging+MLP n_estimators: 100, activation: ‘logistic’, solver: ‘adam’, alpha: 1e-2, 
hidden_layer_sizes: 9, learning_rate: ‘constant’, max_iter: 200000. 

3.3 Variables in the prediction model 

The SHAP method was adopted to analyze the contributions of different variables in prediction 
models. Figure 2 shows the influences of the predictors on the prediction outcomes in the AdaBoost + 
DT model. In the figure, the lengths of the bars indicate the SHAP values, which represent the 
correlations between the predictors and the development of ARDS.  

To aid in the analysis of variable roles, causal inference results were also provided. A causal model 
is given in Figure 3. This causal model was proposed based on the assumption that each predictor had a 
path reaching the ARDS outcome, and also based on correlation information of variables from the 
literature know so far. 

Table 5 and Figure 4 show the ATE results of different predictors according to the causal model. In 
Table 5, the P values indicate the differences between the ATE results in causal identifications and in 
refutation tests. The refutation tests were conducted using ‘bootstrap validation’ and ‘random common 
cause validation’ [43]. As each predictor had a pathway that led to the ARDS, mainly the back-door 
criterion was used in causal identification. 

The smaller the ATE value of a variable is, the more likely this variable is a factor with spurious 
correlation. Tests based on variables with selected SHAP values and ATE values were provided to 
further investigate the importance of variables. And Table 6 shows the results. 

Table 6 indicates that, on the whole, the models with more variables had better performance. 
However, comparable results could also be obtained even if some variables with lower SHAP values 
and lower ATE values were excluded. To improve the prediction performance, besides the most 
prominent predictors of GCS, ISS, TP, and Glu, secondary variables also played roles. 
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Table 4 Performances of different machine learning methods 
Validation 

Mode Methods AUC Accuracy Precision Specificity Sensitivity 

Internal 
validation 

DT 

RF 0.887±0.030 0.797±0.033 0.762±0.058 0.791±0.052 0.807±0.054 

AdaBoost+DT 0.915±0.026 0.833±0.036 0.799±0.060 0.823±0.055 0.845±0.049 

GBDT 0.896±0.030 0.803±0.038 0.829±0.057 0.877±0.043 0.717±0.068 

XGBoost 0.888±0.032 0.809±0.037 0.775±0.059 0.801±0.056 0.820±0.060 

LR 

LR 0.803±0.041 0.731±0.073 0.737±0.073 0.808±0.056 0.641±0.058 

Bagging+LR 0.803±0.041 0.728±0.040 0.733±0.070 0.805±0.055 0.639±0.056 

AdaBoost+LR 0.782±0.042 0.711±0.040 0.726±0.066 0.815±0.046 0.598±0.058 

SVM 

SVM 0.819±0.040 0.752±0.040 0.747±0.065 0.806±0.050 0.688±0.056 

Bagging+SVM 0.817±0.041 0.739±0.043 0.750±0.072 0.822±0.052 0.641±0.059 

AdaBoost+SVM 0.794±0.041 0.699±0.041 0.738±0.073 0.840±0.054 0.535±0.076 

Neural 
Network 

MLP 0.796±0.038 0.722±0.038 0.716±0.061 0.785±0.050 0.640±0.061 

Bagging+MLP 0.801±0.038 0.724±0.039 0.720±0.063 0.783±0.054 0.655±0.061 

External 
validation 

DT 

RF 0.812±0.005 0.725±0.008 0713±0.018 0.691±0.012 0.758±0.012 

AdaBoost+DT 0.851±0.008 0.751±0.014 0.734±0.013 0.710±0.017 0.793±0.019 

GBDT 0.839±0.006 0.745±0.013 0.776±0.017 0.798±0.020 0.693±0.021 

XGBoost 0.815±0.000 0.746±0.000 0.736±0.000 0.720±0.000 0.772±0.000 

LR 

LR 0.662±0.000 0.652±0.000 0.648±0.000 0.630±0.000 0.673±0.000 

Bagging+LR 0.661±0.003 0.652±0.006 0.648±0.007 0.630±0.006 0.673±0.006 

AdaBoost+LR 0.641±0.000 0.592±0.000 0.592±0.000 0.580±0.000 0.604±0.000 

SVM 

SVM 0.668±0.000 0.657±0.000 0.640±0.000 0.590±0.000 0.723±0.000 

Bagging+SVM 0.673±0.005 0.640±0.008 0.631±0.008 0.594±0.011 0.686±0.012 

AdaBoost+SVM 0.642±0.007 0.601±0.010 0.587±0.009 0.504±0.025 0.698±0.020 

Neural 
Network 

MLP 0.680±0.006 0.662±0.010 0.643±0.009 0.590±0.012 0.733±0.011 

Bagging+MLP 0.674±0.008 0.635±0.012 0.630±0.012 0.570±0.022 0.718±0.010 

 
Figure 2 SHAP values in the Adaboost + DT model 
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Table 5 Causal inference results  

Variables ATE in causal 
inference 

ATE in bootstrap validation (0) /ATE after 
adding a common cause (1) 

P-value (0) 
/P-value (1) 

Age 0.2109 0.2004/0.2110 0.92/0.94 
Smoking 0.1322 0.1334/0.1325 0.84/0.84 
Drinking 0.0355 0.0423/0.0352 0.86/0.98 

MAP -0.1789 -0.1796/-0.1791 ≈1.00/0.98 
Respiratory rate 0.0356 0.0311/0.0351 0.96/0.84 

Heart rate -0.1766 -0.1917/-0.1778 0.94/0.96 
WBC 0.3531 0.3393/0.3531 0.92/0.94 

GRAN 0.1341 0.1489/0.1356 0.96/0.86 
PT -0.0218 -0.0208/-0..0202 ≈1.00/0.92 
FIB -0.2005 -1.1893/-0.2003 0.94/0.80 
PLT -0.0175 -0.0376/-0.0188 0.94/0.86 

Blood sodium 0.1494 0.1870/0.1487 0.82/0/98 
TP -0.3659 -0.3731/-0.3673 0.88/0.94 
PA -0.1099 -0.0928/-0.1089 0.94/0.96 

SCR -0.0417 -0.0241/-0.0418 0.78/0.94 
Glu 0.4272 0.4002/0.4276 0.90/0.86 
CK 0.1734 0.1927/0.1731 0.92/0.96 

Shock 0.2716 0.2828/0.2716 0.86/0.92 
Blood transfusion 0.1094 0.1044/0.1090 0.88/0.84 

Emergency operation 0.0306 0.0322/0.0305 0.98/0.90 
Acute lung injury 0.1158 0.1202/0.1159 0.96/0.90 

Pne-thorax 0.1362 0.1287/0.1361 0.90/0.86 
AIS-Thorax 0.1738 0.1662/0.1739 0.90/0.98 
AIS -APC 0.2661 0.2506/0.2663 0.80/0.90 

ISS 0.3105 0.3113/0.3110 0.96/0.88 
GCS -0.4335 -0.4260/-0.4334 0.92/0.96 

APACHE-II score 0.1040 0.1011/0.1036 0.90/0.98 

 
Figure 3 Diagram illustrating the causal model 

4. Discussion  

The Mann-Whitney U test is a nonparametric mean value test method. In this method only rank 
information is considered [44], and the characteristics of the variables were not fully investigated. So, in 
data preprocessing, univariate logistic regression was considered to have greater test power in 
identifying relevant factors. The four variables, HCT, ChE, CK-MB and ALB, were not included in the 
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prediction models, although these variables had significant differences between patients with ARDS 
and patients without ARDS. In fact, if the requirement of normality was relaxed and it was assumed 
that natural variables with large samples will approximately be normal populations, P values for HCT, 
ChE, CK-MB and ALB would be 0.232, 0.204, 0.347, and 0.633, respectively, using the t-test. 

In clinical and epidemiological studies, the sample size is calculated according to the parameters of 
the variables, such as the odds ratio, the probability of the baseline, the confidence lever, the 
significance level, etc., and the statistic power can also be calculated with given formulas.  

 
Figure 4 ATE values in causal inference  

Table 6 Performances of the Adaboost+DT model with selected variables 
Validation Mode Methods AUC Accuracy Precision Specificity Sensitivity 

Internal 
validation 

AdaTree-27 variables 0.915±0.026 0.833±0.036 0.799±0.060 0.823±0.055 0.845±0.049 
AdaTree(|ATE value|≥0.1, 

|SHAP value|≥0.015) 0.896±0.032 0.815±0.034 0.778±0.056 0.801±0.054 0.832±0.051 

AdaTree(|ATE value|≥0.1, 
|SHAP value|≥0.020) 0.885±0.033 0.797±0.034 0.766±0.057 0.796±0.051 0.799±0.058 

AdaTree(|ATE value|≥0.1, 
|SHAP value|≥0.040) 0.872±0.034 0.787±0.042 0.753±0.068 0.782±0.063 0.796±0.062 

AdaTree(|ATE value|≥0.1, 
|SHAP value|≥0.050) 0.830±0.038 0.762±0.037 0.730±0.065 0.770±0.056 0.755±0.059 

External 
validation 

AdaTree-27 variables 0.851±0.008 0.751±0.014 0.734±0.013 0.710±0.017 0.793±0.019 
AdaTree(|ATE value|≥0.1, 

|SHAP value|≥0.015) 0.843±0.008 0.754±0.014 0.737±0.013 0.715±0.016 0.793±0.020 

AdaTree(|ATE value|≥0.1, 
|SHAP value|≥0.020) 0.835±0.008 0.756±0.012 0.737±0.013 0.712±0.019 0.799±0.017 

AdaTree(|ATE value|≥0.1, 
|SHAP value|≥0.040) 0.814±0.005 0.744±0.015 0.731±0.014 0.710±0.017 0.778±0.020 

AdaTree(|ATE value|≥0.1, 
|SHAP value|≥0.050) 0.764±0.007 0.695±0.013 0.673±0.014 0.625±0.023 0.765±0.012 

In multifactor logistic regression, sample power is closely related to interest variables [45]. If only 
the statistical characters of the studied data were considered, for the interest variables of FIB, GCS, and 
blood transfusion, the sample power of 550 samples could reach 0.987 (using PASS 15.05, OR: 0.632, 
Baseline probability: 0.31[11, 16], R-Squared: 0.292, alpha: 0.05, Alternative hypothesis: two-sided), 
0.825 (OR: 0.736, Baseline probability: 0.31, R-Squared: 0.243, alpha: 0.05, Alternative hypothesis: 
two-sided), and 0.951 (OR: 2.054, Baseline probability: 0.31, Percent with X1=1: 0.44, alpha: 0.05, 
Alternative hypothesis: two-sided), respectively. But, for the interest variables such as MAP, Age, Glu, 
sample power would decrease to below 0.50. To maintain a high sample power for each interest 
variable, for example a sample power of 0.85, more than 165714 samples were needed (The variable 
‘Age’ was taken as an example, using PASS 15.05, OR: 1.019, Baseline probability: 0.31, R-Squared: 
0.285, alpha: 0.05, Alternative hypothesis: two-sided). 
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Nevertheless, this research is more inclined to be a pattern recognition study. ARDS prediction was 
carried out only based on sample classification, and statistical features of predictors, as well as 
functional relationships between predictors and ARDS outcomes, were not needed to be considered 
comparatively.  

There is no clear requirement of sample size for pattern recognition. In [46], it was indicated that 
samples should be several times the size of the data dimension, and the specific rate was determined by 
the optimization objectives. In engineering, a generally accepted option is that the number of samples 
should be 10 times the VC dimension of a machine learning model. For example, at least 280 samples 
are needed to train an SVM model with a linear kernel and 27 variables, and with an additional 
requirement of balanced samples. From this point of view, neural networks need far more samples as 
large training parameters are involved. However, with the help of some techniques, such as 
regularization and dropout, fewer samples are also acceptable. The VC dimension of the tree models is 
adjusted according to the number of leaf nodes [47], and the tree models seemed to be able to reach the 
same sample power with a much smaller sample size [48]. 

The results of this study revealed that new machine learning models have the power to compete 
with conventional models in predicting the development of ARDS in patients with severe trauma. Tree 
models outperformed other machine learning models in both internal and external validation. However, 
according to the above analysis, it was also found that, being limited to the sample size, some machine 
learning models did not fully play their due roles. When the sample size is large, other machine 
learning methods, such as SVM and neural networks, may get comparable results. Compared to 
regression models, tree models have less interpretability. Therefore, in this study the SHAP method was 
provided to analyze the importance of each predictor. The essential variables in the prediction model 
were also uncovered.  

The results of external validation in Table 4 also indicate that although the AdaBoost + DT model 
had the best performance, it was not stable. The prediction model training by the XGBoost algorithm 
was more stable and also had comparable results. If more stable results are needed, the XGBoost 
prediction model can be chosen. 

The results of SHAP analysis showed that GCS, ISS, total protein, and blood glucose were the most 
important indicators in predicting ARDS in trauma patients. ISS [11, 17, 22], GCS [17], blood glucose [6, 20] 

and total protein [49] have been reported to be critical predictors associated with the development of 
ARDS in patients with severe trauma. And the findings in this study prove these studies. The results in 
Figure 2 and Figure 3 also indicate that blood sodium, creatine kinase, mean arterial pressure, AIS 
score, age, acute lung injury, APACHE-II score, heart rate, fibrinogen, prealbumin, shock, white blood 
cell count, smoking, pneumohemo-thorax, granulocyte and blood transfusion also had informational 
value in the prediction of ARDS. And these variables are secondary importance predictors. The results 
of casual inference in Table 5 show that whether drinking, respiratory rate, serum creatinine, 
prothrombin time, platelet, and emergency operation are factors with spurious correlations with the 
development of ARDS needs further investigations. These were inexplicit variables and the results in 
Table 6 prove that even if these variables were excluded in the model construction, a similar prediction 
performance could also be obtained. 

In addition to the above findings, hypertension and diabetes mellitus were found to have no 
significant associations with the development of ARDS in patients with severe trauma. This is different 
from the research reports in [17] and [26]. It was also found that sex (P=0.063) was not significantly 
associated with the development of ARDS in patients with severe trauma. This was consistent with the 
reports in the literature [13, 22], and [23], but somewhat different from the reports in the literature [10, 15, 17, 

18], and [26]. The reasons for these different findings may be different demographic characteristics, or the 
limitation of the patient proportion in this study. 

This is a preliminary study and there are some issues that should be discussed and addressed before 
clinical application. Regarding the study design, this study was conducted in one medical centre. 
Whether the findings can be generalized to other populations needs a further study. The retrospective 
nature of the present investigation was also a restriction. Regarding prediction models, since there are 
many machine algorithms, maybe another one that performs better can be found further. Being limited 
to the sample size in this study, the power of some algorithms has not been fully exploited, especially 
the power of neural networks. Also being limited to the sample size and limited to biased data features, 
it was inevitable that biased estimates were obtained in the analysis of variable roles. These problems 
will be discussed in our further study. With respect to the ARDS prediction, the development of ARDS 
is time-varying and is not an absorbing state. The time-varying prediction of ARDS based on time-
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series models is another valuable question in a further discussion. Even so, in clinic, about 90% of 
patients with severe trauma developed ARDS 5 days after admission to the ICU and many patients 
even developed ARDS earlier [50]. For timely support, early detection of the risk of ARDS in patients 
with severe trauma is still of great importance. 

In summary, this preliminary study established an acceptable prediction model for the development 
of ARDS based on predictors that were easily obtained. And this prediction model has the potential for 
the early detection of ARDS in patients with severe trauma. Relevant valuable factors for the 
development of ARDS were also uncovered.  

5. Conclusions 

The research objects were patients with severe trauma in the affiliated hospital of Zunyi Medical 
University from September 2021 to December 2022. Clinical data was collected and used to predict the 
development of ARDS early in patients with severe trauma. The results indicated that the collected data 
has a certain value in the prediction of ARDS. Intelligent tree models, particularly the Adaboost + DT 
model, can make good use of these data to predict the development of ARDS.  
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