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Abstract: An early prediction of Acute Respiratory Distress Syndrome (ARDS) in patients with severe
trauma based on clinical data can help nurse clinicians screen high-risk groups that would develop
ARDS. To achieve this purpose, machine learning methods were adopted and tested. This retrospective
cohort study was performed on the data of the severe trauma patients admitted to the ICU of the
affiliated hospital of Zunyi Medical University from September 2021 to November 2022. The required
data for construing the prediction models was collected from medical records of these patients.
Univariate logistic regression was used first to achieve the purpose of reducing the data dimension.
Then, twelve machine learning methods classified into four categories, which were neural network,
logistic regression (LR), decision tree (DT) and support vector machine (SVM), were adopted in the
early prediction of ARDS in patients with severe trauma. Internal cross-validation was conducted in 50
numerical experiments, and in each test, a training set consisted of 80% of the samples that were
randomly selected, and the remaining 20% of the samples were in a validation data set. In the internal
validation, 550 patients were involved. 250 cases developed ARDS within one week and 300 cases had
no ARDS. Machine learning methods were also tested in external validation with 100 trauma patients
who developed ARDS within one week and 101 controls. Based on the test results, the optimal machine
learning model was investigated. Then, significant predictors associated with the development of ARDS
were further examined with the help of SHAP (SHapley Additive exPlanations) analysis and causal
inference. Tree models showed high discrimination in both internal and external validation. The model
trained by the AdaBoost + DT (decision tree) algorithm had the most balanced results, and showed
that AUC (area under the curve), accuracy, precision, specificity and sensitivity were 0.915, 0.833,
0.799, 0.823, 0.845, respectively, in the cross validation, and 0.851, 0.751, 0.734, 0.710, 0.793,
respectively, in the external validation. The findings indicated that Glasgow Coma Scale (GCS), Injury
Severity Score (ISS), Total protein (TP), and blood glucose (Glu) were the most important relevant
factors for the ARDS prediction. The use of collected clinical data to predict the development of ARDS
in patients with severe trauma has a certain value. Tree models have the best discrimination power in
predicting ARDS after major trauma. Essential predictors at least contain GCS, ISS, TP, and Glu.
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1. Introduction
1.1 Background

Severe trauma (Injury Severity Score (ISS)>16) is a leading cause of death among young people in
both developed and developing countries, as a result of traffic accidents and work accidents'"> 2. Acute
injuries can cause secondary tissue damage due to the ischemia-reperfusion injury, as well as a
systemic inflammatory response and extensive damage to pulmonary capillary endothelial cells and
pulmonary epithelial cells, and eventually cause the development of Acute Respiratory Distress
Syndrome (ARDS) *4]. So, one of the most common secondary diseases of severe trauma is ARDS.
The statistics showed that the prevalence of traumatic ARDS ranged between 25% and 50% ' ¢, and
the incidence of ARDS was approximately 10.4% in patients in the intensive care unit (ICU), where
traumatic patients account for 6.5% >8], Severe trauma patients with ARDS also have a high mortality
rate, with a nearly 40% chance of dying *°]. Early identification of high-risk patient groups of ARDS

Published by Francis Academic Press, UK
4-



Academic Journal of Medicine & Health Sciences

ISSN 2616-5791 Vol. 6, Issue 8: 24-38, DOI: 10.25236/AJMHS.2025.060804

after severe trauma is critical for timely supportive treatment and nursing, and it can help reduce the
incidence of the development of ARDS and further improve the medical prognosis of trauma patients.

1.2 Related works

Currently, risk factors for the development of ARDS in trauma patients have been studied
extensively, but only a few works involve the early prediction of ARDS in trauma patients.

Investigations of risk factors for the development of ARDS in trauma patients could be found in the
literature & %261, In 121 risk factors for ARDS after trauma were studied in patients with different
injury mechanisms. In [%20211 the problem of determining risk factors for ARDS was mainly discussed
in patients with multiple injuries. In !'5161 associations between the development of ARDS in trauma
patients and the two risk factors, sex and acute blood transfusion, were surveyed. Mortality in trauma
patients complicated with ARDS and its relevant factors were also studied in 2+, Based on the
literature review, it was found that risk factors for ARDS after severe trauma included APACHE(Acute
Physiology and Chronic Health Evaluation)-II score, ISS, Glasgow Coma Scale (GCS), massive
transfusion, sex, admission hypotension, infection, pneumonia, pulmonary contusion, flail chest injury,
age, admission tachycardia, history of cardiopulmonary and hematologic disease, preexisting vascular
and respiratory diseases, surgical operation, blood glucose, chronic alcohol use, diabetes mellitus,
smoking, sepsis, use of total parenteral nutrition, shock, gastrointestinal hemorrhage, disseminated
intravascular coagulation, etc. The validation of biomarkers in the diagnosis and prediction of ARDS in
trauma patients was also investigated in ['%,

To obtain an early clinical prediction result for the development of ARDS in trauma patients based
on risk factors, multivariate logistic regression had been adopted > 221, However, far few studies
discussed modern machine learning algorithms in the prediction of ARDS after trauma. Some works
discussed the prediction of ARDS in critical patients using machine learning algorithms 33!, but did
not focus on trauma patients. Various intelligent machine learning algorithms were used to assist in the
prediction of ARDS based on clinical records and biological examinations in patients with diseases
such as Corona Virus Disease 2019 (COVID-19) and severe acute pancreatitis 5234, To the authors'
knowledge, only one ARDS prediction study based on modern machine learning technology could be
found in patients after severe trauma 3. In this work, deep learning-based image processing
technology was adopted, and this work did not cover specific clinical records and biological
examinations. An early prediction model of ARDS in patients with severe trauma based on clinical
records and biological examinations is an important aid to the diagnosis that relies only on imaging
examinations. And this was the main research objective of this paper.

1.3 Researches in this study

Machine learning technology can be used to analyze known information comprehensively, and due
to the introduction of a penalty function with regularization, many machine learning algorithms can
effectively reduce the influence of collinearity. Therefore, machine learning algorithms are powerful
technical means for data analysis and the prediction of clinical outcomes %, The predictability of
ARDS in trauma patients can be observed in machine learning models, and the impacts of different
relevant factors on prediction results can also be explored further. In this research, four categories of
machine learning methods, neural network, logistic regression (LR), decision tree (DT), and support
vector machine (SVM), were adopted to predict whether patients with severe trauma would develop
ARDS within one week after admission to the hospital. These methods included random forest (RF),
AdaBoost + DT, Gradient Boosting Decision Tree (GBDT), eXtreme Gradient Boosting (XGBoost),
LR, Bagging + LR, AdaBoost + LR, SVM, Bagging + SVM, AdaBoost + SVM, multilayer perception
(MLP), and Bagging + MLP, specifically *738]. Subsequently, the associations between predictors and
ARDS in trauma patients were further discussed based on SHAP (SHapley Additive exPlanations)
analysis [**) and causal inference [0 41,

2. Materials and Methods
2.1 Study design

Potential predictors from the literature and expert opinions, and also with clinical accessibility, were
comprehensively considered and collected. Patients were eligible if they were at least 18 years old,
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were admitted to the hospital within 24 hours after trauma and had

Table 1 Clinical data collected from severe trauma patients

Indicators Not ARDS(n=300) ARDS(n=250) P-value
General information
Age (year) 49(39, 57) 53(46, 57) 0.001
Male sex 217(72.30%) 198(79.20%) 0.062
Smoking
No 210(70.00%) 146(58.40%) 0.005
Yes 90(30.00%) 104(41.6%)
Drinking 0.035
No 216(72.00%) 159(63.60%)
Yes 84(28.00%) 91(36.40%)
Injury mechanism 0.421
Traffic accident 138(46.00%) 114(45.60%)
Fall 74(24.67%) 66(26.40%)
Other 88(29.33%) 70(28.00%)
Consultation time window after
trauma (CTWAT) (hour) 3G3.7) 33, 8) 0.642
Systolic bl‘zgﬂd Hﬂfgsure (SBP) 155.00(109.50, 137.00)  117.00(97.00, 128.00) <0.001
Diastolic bl‘(’r‘;illilrge)ssure (DBP) 77.00(69.00, 85.00) 72.0(63.00, 81.00) <0.001
Heart rate (times/min) 87.00(78.00, 98.00) 90.00(80.00, 105.00) 0.004
Respiratory rate (times/min) 20(19, 21) 20(19, 22) 0.010
Laboratory examinations
Oxygen saturation (Sa02) (%) 98(97, 98) 98(96, 98) 0.310
White bl""‘gfg;l/g’“m (WBC) 13.78(11.00, 18.29) 15.76(12.03, 19.74) 0.003
Granulocyte (Gran) (109/L) 12.07(8.88, 16.15) 12.94(10.35, 17.13) 0.006
Prothrombin time (PT) (s) 10.70(9.85, 12.10) 11.00(10.40, 12.70) <0.001
Activated partial thromboplastin
time (APTT) (s) 26.15(23.65, 30.40) 25.30(23.70, 29.35) 0.347
Fibrinogen (FIB) (g/L) 2.37(1.90, 2.90) 2.13(1.64, 2.60) <0.001
Hematocrit (HCT) (%) 39(34, 42) 36(31, 40) <0.001(0.232)
Platelet (PLT) 201.37+68.71 188.17+68.19 0.035
Blood potassium (mmol/L) 3.80(3.53,4.11) 3.90(3.58, 4.23) 0.073
Blood sodium (mmol/L) 139.04(137.80, 140.93) 140.32(138.72, 142.00) <0.001
Cholinesterase (ChE) (K/uL) 7.0(5.8, 8.3) 6.4(4.9,7.3) <0.001(0.204)
Total protein (TP) (g/L) 61.50(56.46, 66.15) 56.31(49.30, 62.00) <0.001
Albumin (ALB) (g/L) 38.10(34.80, 41.00) 35.20(30.90, 39.10) <0.001(0.633)
Prealbumin (PA) (mg/L) 216.5+£58.4 204.0+54.2 0.010
Serum creatinine (SCR) 70.00(60.50, 82.50) 75.50(63.00,89.00) 0.002
(umol/L)
Serum bicarbonate (HCO3) 20.9843.36 20.83+3.28 0.584
(mmol/L)
Blood glucose (Glu) (mmol/L) 7.07(6.05, 8.20) 8.28(6.90, 10.26) <0.001
Creatine kinase (CK) (U/L) 449.00(231.00, 890.00)  621.98(232.74, 1587.54) 0.001
Creatine kinase isoenzyme MB
(CK-MB) (U/L) 32(19, 49) 41(25, 67) 0.001(0.347)
Treatments
Blood transfusion <0.001
No 192(64.00%) 116(46.40%)
Yes 108(36.00%) 134(53.60%)
Emergency operation 0.005
No 202(67.33%) 137(54.80%)
Yes 98(32.67%) 113(45.20%)
Underlying diseases
Hypertension 0.269
No 276(92.00%) 236(94.40%)
Yes 24(8.00%) 14(5.60%)
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Table 1 Continued

Indicators Not ARDS(n=300) ARDS(n=250) P-value
Diabetes mellitus 0.534
No 286(95.30%) 241(96.40%)
Yes 14(4.70%) 9(3.6%)
Initial CT scans
Acute lung injury <0.001
No 149(49.67%) 72(28.80%)
A single side 15(5.00%) 41(14.40%)
Both sides 136(45.33%) 137(54.80%)
Pneumohemothorax (Pne-thorax) <0.001
No 236(78.67%) 198(79.20%)
A single side 29(9.67%) 46(18.40%)
Both sides 35(11.67%) 6(2.40%)

Disease severity
Abbreviated Injury Score (AIS)

AIS - Head/Neck 0(0, 3) 0(0, 2) 0.785
AIS-APC (abdomen and pelvic cavity) 0(0, 2) 002, 3) <0.001
AIS- Thorax 43, 4) 4(3,4) 0.004
AIS - Extremities 2(0, 3) 2(1,2) 0.750
AIS -Body surface 1(0, 1) 1(0, 1) 0.352
AIS- Face 0(0, 1) 0(0, 0) 0.048
ISS 24(20, 27) 29(24, 32) <0.001
GCS 15(15, 15) 14(12, 15) <0.001
APACHE-II Score 6(4,8) 8(6, 11) <0.001
Shock <0.001

No 267(89.00%) 170(68.00%)

Yes 33(11.00%) 80(32.00%)

An ISS score of at least 16, as well as stayed in the hospital at least 72 hours. Patients who had
incomplete clinical data, patients with ARDS at admission, patients with chronic obstructive pulmonary
disease and chronic heart failure, patients with a stay of less than 24 hours and patients who died before
developing ARDS were excluded from the study.

The primary dataset for this retrospective cohort study included 550 patients with severe traumatic
injuries. 250 patients developed ARDS within one week after admission to the hospital, and 300
patients did not develop ARDS. All patients were from the affiliated hospital of Zunyi Medical
University from September 2021 to April 2022. The diagnosis of ARDS was according to the Berlin
definition [42]. Table 1 details the indicators of these patients.

A total of 100 trauma patients who developed ARDS within one week and 101 controls who did not
develop Ards were included additionally in the external validation dataset. These cases were collected
from July 2022 to December 2022, and also from the affiliated hospital of Zunyi Medical University.

2.2 Machine learning Models

Algorithms including RF, AdaBoost + DT, GBDT, XGBoost, LR, Bagging + LR, AdaBoost + LR,
SVM, Bagging + SVM, AdaBoost + SVM, Multilayer Perception (MLP) and Bagging + MLP were
adopted. In this study, the base classifier of the ensemble algorithms of GBDT, RF, and XGBoost was
DT. Machine learning models were performed using the numerical simulation tool, Python (version
3.8.1) + Scikit-learn (version 1.1.3).

To evaluate the overall performance of prediction models, the prediction accuracy and AUC values
were first considered, and then precisions, specificities and sensitivities were observed. AUC value
(area under the curve) is the area under the Receiver Operating Characteristic (ROC) curve, and the
following equations are the definitions of accuracy, precision, sensitivity and specificity.

Accuracy=(tp+tn)/tp+fp+tn+fn) (1)
Precision=(tp)/Atp+1p) 2
Sensitivity=(tp)/Atp+fn) 3)
Specificity=(tn)Atn+1p) 4)
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Where, tp represents the number of actual positive cases that are predicted as positive results; tn
represents the number of actually negative cases that are predicted as negative results; fn represents the
number of actually positive cases that are predicted as negative results; and fp represents the number of
actually negative cases that are predicted as positive results.

2.3 Data processing procedures

Theoretically, if there are sufficient samples, in machine learning methods, the influences and
weights of irrelevant and low correlation factors can be lowered automatically. However, in view of the
fact that the sample size is often limited, reducing the data dimension is necessary to reduce the impact
of overfitting. Univariate logistic regression analysis was first used to select valuable variables. The
variables that had a statistically significant relationship with the outcome “ARDS occurred during the
observation period” were the selected variables.

The next step is the construction and validation of the ARDS prediction models. The test results of
different prediction models were compared. Variable roles were also analyzed based on SHAP analysis
and casual inference.

Details of data processing are shown in the steps detailed below and in Figure 1.

Step 1: This was a data collection and collation step. As most of the missing data in this study were
missing observations of some continuous attributes, mean and mode values were preferentially used to
fill in the missing pieces. For common physical signs, such as body temperature and arteria ph, the
missing pieces were normal values by default.

Step 2: Univariate logistic regression was used to select valuable variables in this step. The outcome
‘ARDS occurred during the observation period’ was represented by 1, and ‘ARDS did not occur during
the observation period’ was represented by 0. The collected indicators that were not significantly
related to ARDS were not considered.

Step 3: In this step, the data transformation was implemented. Category variables were converted to
binary codes. Continuous variables and rank variables were normalized as follow:

x;':(xi - xmin) / ('xmax - xmin (5)

Step 4: This step is model constructing. In addition to basic classifiers, some ensemble algorithms,
such as AdaBoost, Bagging, GBDT, RF, and XGBoost were supplemented in this step. The holdout
cross-validation was used in internal validation, and external validation was also conducted.

Internal cross-validation was conducted in 50 numerical experiments. And in each test, 80% of the
samples that were randomly selected were placed in a training set, and the remaining 20% of the
samples were in a validation data set. In external validation, all the 550 samples used in internal
validation were used to train a model, and 201 samples in the external validation dataset were used as
validation data. The performance of different machine learning algorithms was also compared and
evaluated in this step.

Step 5: contributions of different predictors were compared using shap analysis. Important
predictors for the development of ards in patients with severe trauma were analyzed on the basis of
variable contributions. Casual inference was also adopted to analyze the predictor roles supplementary.

The general outline of the above steps is shown in Figure 1.

/~ N\
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Data collec'tlon Valuable \{arlable Data transformation | Data preprocessing w‘
and collation selection \ results |

N

Machine learning methods f———y

Further findings «/Optimized models and\\ - : Result observation in
X K (= R . (=== Variable analysis ..
and discussions \\\1mportant predictors / prediction tests

Figure 1 Data processing procedures in this paper
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2.4 Statistical analysis

The statistical analysis was performed using SPSS (version 19.0). The level of statistical
significance was set at P<0.05. The Kolmogorov-Smirnov test was used to test the normality of
continuous variables. To compare the studied variables between the ARDS group and the non-ARDS
group, the independent t-test was used in the case of normality and the Mann-Whitney U test was used
in the case of non-normality. For qualitative variables, the Chi-square test or the Fisher test was used.

Causal inference tests were performed with the help of Python (version 3.8.1) + Microsoft DoWhy
(version 0.8). In causal inference, three methods, the back-door criterion, the front-door criterion, and
the instrumental variable analysis, were adopted in causal identifications. The ATE (Average Treatment
Effect) value was used to evaluate the treatment effect.

3. Results
3.1 Valuable variable selection

The results of the variable selection using univariate logistic regression are shown in Table 2.
Variables marked with ‘*” were selected variables. Table 2 indicates that, except for a few cases, most
variables with significant difference between the two groups of patients also had significant impacts on
the development of ARDS. Only variables, including HCT, ChE, CK-MB and ALB, had no significant
correlations. These four variables were evaluated using the Mann-Whitney test in the base-line data. To
further reduce the data dimension, MAP (mean arterial pressure) was used to integrate the information
from SBP and DBP, and MAP= (2*DBP+SBP)/3.

Table 2 Inclusion variables in the ARDS prediction

Variables 0Odd ratio 95%ClI P-value Variables 0Odd ratio 95%ClI P-value
Age* 1.019 1.007-1.030 0.002 AIS-Thorax* 1.160 1.021-1.319 0.023
Smoking* 1.662 1.168-2.364  0.005 AIS-APC * 1.326 1.189-1.479  <0.001
Drinking* 1.472 1.026-2.110  0.036 ISS* 1.112 1.081-1.144  <0.001
SBP* 0.982 0.973-0.990 <0.001 GCS* 0.736 0.667-0.812  <0.001
DBP* 0.974 0.961-0.987  <0.001  APACHE-II score* 1.141 1.094-1.190  <0.001
Respiratory rate* 1.067 1.007-1.131 0.029 Sex 0.687 0.462-1.021 0.063
Heart rate® 1.012 1.002-1.023 0.020 Injury mechanism 0.989 0.799-1.224 0.526
WBC* 1.041 1.012-1.070  0.004 CTWAT 0.976 0.951-1.001 0.065
Gran* 1.044 1.013-1.075  0.005 Sa02 0.947 0.890-1.008  0.087
PT* 1.156 1.060-1.261 0.001 APTT 1.007 0.994-1.019 0.285
FIB* 0.632 0.511-0.780  <0.001 HCT 0.600 0.245-1.472  0.265
PLT* 0.996 0.994-0.999  0.010 Blood potassium 0.981 0.868-1.110  0.762
Blood sodium* 1.136 1.068-1.208  <0.001 ChE 0.971 0.917-1.029 0.319
TP* 0.940 0.921-0.959  <0.001 HCO3 0.986 0.937-1.037  0.583
PA* 0.996 0.993-0.999  0.010 CK-MB 1.101 0.999-1.004  0.387
SCR* 1.010 1.003-1.018  0.006 Hypertension 0.682 0.345-1.349  0.272
Glu* 1.201 1.121-1.287  <0.001 Diabetes mellitus 0.763 0.325-1.793  0.535
CK* 1.001 1.000-1001 0.001 AIS - Head/Neck 0.987 0.880-1.108  0.827
Shock* 3.807 2.342-5.964  <0.001 AIS - Extremities 0.984 0.843-1.147  0.835
Blood transfusion* 2.054 1.458-2.893  <0.001 AIS -Body surface 0.900 0.700-1.158 0.412
Emergency operation* 1.075 0.747-1.548 0.006 AIS -Face 0.889 0.748-1.055 0.178
Acute lung injury* 1.143 1.179-1.694  <0.001 ALB 1.001 0.996-1.006 0.640
Pne-thorax* 1.429 1.099-1.858  0.008

3.2 Performances of machine learning models

The parameters of the machine learning algorithms in numerical tests are shown in Table 3. And the
performance of different machine learning models both in internal and external validation is shown in
Table 4. In Table 4, the external validation results are also the average values in 50 numerical
experiments. Prediction models with a standard deviation of 0.000 in the external validation were the
stable ones.

The results in Table 4 show that tree models outperform other models. Accuracy, precision,
sensitivity and specificity could reach 0.833, 0.829, 0.853, and 0.877 respectively. In general, the
AdaBoost + DT model provided the best results. Compared to the GBDT model, the sensitivity value
obtained by the AdaBoost + DT model is greater than the specificity value. Therefore, AdaBoost + DT
was more capable of screening patients who would develop ARDS. It was also found that ensemble
learning is more adapted to tree models, and ensemble algorithms in LR, SVM and neutral network had
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no advantages and sometimes even performed worse.

Table 3 Parameter choices in machine learning models

Methods Parameters
n_estimators: 120, criterion: ‘entropy’, max_depth: 9,
RF — . _
min_samples_leaf: 3.
AdaBoost+DT n_estimators: 120, .a1g0r1thm: SAMME, max_depth: 9,
min_samples_leaf: 3.
GBDT n_estimators: 120, madeepth: 9, min_samples_leaf: 3,
learning_rate: 0.1.
base_score: 0.5, booster: ‘gbtree’, colsample bylevel: 1,
XGBoost colsample bynode:1, colsample bytree:1, gamma: 0, learning_rate:
0.1, max_depth: 9, min_child weight: 1, n_estimators: 200,
objective: ‘binary:logistic’, scale pos weight: 1.
LR penalty: 12, tol: 1e-3, C: 1.0, solver: ‘liblinear’, max_iter: 10000.
. n_estimators: 120, penalty: 12, tol: 1e-3, C: 1.0, solver: ‘liblinear’,
Bagging+LR max_iter: 10000.
n_estimators: 120, algorithm: ‘SAMME.R’, learning_rate: 0.1,
AdaBoosttLR penalty: 12, tol: 1e-3, C: 1.0, solver: liblinear, max_iter: 10000.
C: 1.0, gamma: ‘auto’, kernel: ‘linear’, tol: 1e-3, probability:
SVM . ,
True’.
. n_estimators: 120, C: 1.0, gamma: ‘auto’, kernel: ‘linear’, tol: 1e-3,
Bagging+SVM probability: ‘True’.
n_estimators: 120, algorithm: ‘SAMME.R’, learning_rate: 0.1,
AdaBoost+SVM gamma: ‘auto’, kernel: ‘linear’, tol: le-3, probability: ‘True’.
. activation: ‘logistic’, solver: ‘adam’, alpha: le-2,
MLP(1 hidden layer) hidden layer sizes: 9, learning_rate: ‘constant’, max_iter: 200000.
. n_estimators: 100, activation: ‘logistic’, solver: ‘adam’, alpha: le-2,
Bagging+MLP hidden_layer sizes: 9, learning_rate: ‘constant’, max_iter: 200000.

3.3 Variables in the prediction model

The SHAP method was adopted to analyze the contributions of different variables in prediction
models. Figure 2 shows the influences of the predictors on the prediction outcomes in the AdaBoost +
DT model. In the figure, the lengths of the bars indicate the SHAP values, which represent the
correlations between the predictors and the development of ARDS.

To aid in the analysis of variable roles, causal inference results were also provided. A causal model
is given in Figure 3. This causal model was proposed based on the assumption that each predictor had a
path reaching the ARDS outcome, and also based on correlation information of variables from the
literature know so far.

Table 5 and Figure 4 show the ATE results of different predictors according to the causal model. In
Table 5, the P values indicate the differences between the ATE results in causal identifications and in
refutation tests. The refutation tests were conducted using ‘bootstrap validation’ and ‘random common
cause validation’ [} As each predictor had a pathway that led to the ARDS, mainly the back-door
criterion was used in causal identification.

The smaller the ATE value of a variable is, the more likely this variable is a factor with spurious
correlation. Tests based on variables with selected SHAP values and ATE values were provided to
further investigate the importance of variables. And Table 6 shows the results.

Table 6 indicates that, on the whole, the models with more variables had better performance.
However, comparable results could also be obtained even if some variables with lower SHAP values
and lower ATE values were excluded. To improve the prediction performance, besides the most
prominent predictors of GCS, ISS, TP, and Glu, secondary variables also played roles.
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Table 4 Performances of different machine learning methods

mean(|SHAP value]) (average impact on model output magnitude) in Adaboost+DT

Figure 2 SHAP values in the Adaboost + DT model

Va&ie:itéon Methods AUC Accuracy Precision Specificity Sensitivity
RF 0.887+0.030 | 0.797+0.033 | 0.762+0.058 | 0.791+£0.052 | 0.807+0.054
AdaBoosttDT | 0.915+0.026 | 0.833+£0.036 | 0.799+0.060 | 0.823+0.055 | 0.845+0.049
DT
GBDT 0.896+0.030 | 0.803£0.038 | 0.829+£0.057 | 0.877+0.043 | 0.7170.068
XGBoost 0.888+0.032 | 0.809+0.037 | 0.775+0.059 | 0.801£0.056 | 0.820+0.060
LR 0.803+0.041 | 0.731£0.073 | 0.737£0.073 | 0.808+0.056 | 0.6410.058
Internal LR BaggingtLR | 0.803+0.041 | 0.728+0.040 | 0.733+0.070 | 0.805+0.055 | 0.639+0.056
validation AdaBoostHLR | 0.782£0.042 | 0.71120.040 | 0.726:0.066 | 0.815:0.046 | 0.598+0.058
SVM 0.819+0.040 | 0.7524+0.040 | 0.747+0.065 | 0.806+0.050 | 0.688+0.056
SVM Bagging+SVM | 0.817+0.041 | 0.739+0.043 | 0.750+0.072 | 0.822+0.052 | 0.641+0.059
AdaBoost+SVM | 0.794+0.041 | 0.699+0.041 | 0.738+0.073 | 0.840+0.054 | 0.535+0.076
Neural MLP 0.796£0.038 | 0.722+0.038 | 0.716£0.061 | 0.785+0.050 | 0.640+0.061
Network | BoooingtMLP | 0.801£0.038 | 0.724+0.039 | 0.72040.063 | 0.783£0.054 | 0.655£0.061
RF 0.81240.005 | 0.725+0.008 | 0713+0.018 | 0.691+0.012 | 0.758+0.012
AdaBoosttDT | 0.851+0.008 | 0.751+0.014 | 0.734+0.013 | 0.710+0.017 | 0.793+0.019
DT
GBDT 0.839+0.006 | 0.745+0.013 | 0.776£0.017 | 0.798+0.020 | 0.693+0.021
XGBoost 0.815£0.000 | 0.746£0.000 | 0.736£0.000 | 0.720+0.000 | 0.772:0.000
LR 0.662£0.000 | 0.652+0.000 | 0.648+0.000 | 0.630+£0.000 | 0.6730.000
External LR BaggingtLR | 0.661+0.003 | 0.652+£0.006 | 0.648+0.007 | 0.630+0.006 | 0.673+0.006
validation AdaBoostHLR | 0.641£0.000 | 0.592+0.000 | 0.592+0.000 | 0.580+0.000 | 0.604+0.000
SVM 0.668+0.000 | 0.657+0.000 | 0.640+£0.000 | 0.590+£0.000 | 0.7230.000
SVM Bagging+SVM | 0.673£0.005 | 0.640+0.008 | 0.631+0.008 | 0.594+0.011 | 0.686+0.012
AdaBoost+SVM | 0.642+0.007 | 0.601£0.010 | 0.587+0.009 | 0.504+0.025 | 0.698+0.020
Neural MLP 0.680£0.006 | 0.662+0.010 | 0.643+0.009 | 0.590+0.012 | 0.733+0.011
Network | BoooingtMLP | 0.674£0.008 | 0.635:0.012 | 0.63040.012 | 0.570£0.022 | 0.718£0.010
GCS | 0.147
ISS ] 0.088
TP | 0.070
Glu | 0.061
Blood sodium | 0.048
CK | 0.047
PT | 0.046
MAP 0.045
AIS-APC | 0.042
Age —— () 038
Acute lung injury  —— 0,025
PLT 7— 0.023
APACHE-II score [ — 0.023
Heart rate 7— 0.022
FIB ——0.019
SCR s 0019
Respiratory rate mm—0.018
PA i— (018
Shock —0.017
WBC —0.017
AIS-Thorax —0.015
Smoking —0.014
Pne-thorax —0.013
Gran —0.011
Blood transfusion J—0.009
Drinking = 0.003
Emergency operation m 0.002
0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160
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Table 5 Causal inference results

. ATE in causal ATE in bootstrap validation (0) /ATE after P-value (0)
Variables . .
inference adding a common cause (1) /P-value (1)
Age 0.2109 0.2004/0.2110 0.92/0.94
Smoking 0.1322 0.1334/0.1325 0.84/0.84
Drinking 0.0355 0.0423/0.0352 0.86/0.98
MAP -0.1789 -0.1796/-0.1791 ~1.00/0.98
Respiratory rate 0.0356 0.0311/0.0351 0.96/0.84
Heart rate -0.1766 -0.1917/-0.1778 0.94/0.96
WBC 0.3531 0.3393/0.3531 0.92/0.94
GRAN 0.1341 0.1489/0.1356 0.96/0.86
PT -0.0218 -0.0208/-0..0202 ~1.00/0.92
FIB -0.2005 -1.1893/-0.2003 0.94/0.80
PLT -0.0175 -0.0376/-0.0188 0.94/0.86
Blood sodium 0.1494 0.1870/0.1487 0.82/0/98
TP -0.3659 -0.3731/-0.3673 0.88/0.94
PA -0.1099 -0.0928/-0.1089 0.94/0.96
SCR -0.0417 -0.0241/-0.0418 0.78/0.94
Glu 0.4272 0.4002/0.4276 0.90/0.86
CK 0.1734 0.1927/0.1731 0.92/0.96
Shock 0.2716 0.2828/0.2716 0.86/0.92
Blood transfusion 0.1094 0.1044/0.1090 0.88/0.84
Emergency operation 0.0306 0.0322/0.0305 0.98/0.90
Acute lung injury 0.1158 0.1202/0.1159 0.96/0.90
Pne-thorax 0.1362 0.1287/0.1361 0.90/0.86
AIS-Thorax 0.1738 0.1662/0.1739 0.90/0.98
AIS -APC 0.2661 0.2506/0.2663 0.80/0.90
ISS 0.3105 0.3113/0.3110 0.96/0.88
GCS -0.4335 -0.4260/-0.4334 0.92/0.96
APACHE-II score 0.1040 0.1011/0.1036 0.90/0.98

GCS

Age

APACHE-II ©

score

Blood
sodium

Emergency
operation

Gran

4. Discussion

The Mann-Whitney U test is a nonparametric mean value test method. In this method only rank
information is considered (4, and the characteristics of the variables were not fully investigated. So, in
data preprocessing, univariate logistic regression was considered to have greater test power in
identifying relevant factors. The four variables, HCT, ChE, CK-MB and ALB, were not included in the
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Figure 3 Diagram illustrating the causal model
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prediction models, although these variables had significant differences between patients with ARDS
and patients without ARDS. In fact, if the requirement of normality was relaxed and it was assumed
that natural variables with large samples will approximately be normal populations, P values for HCT,
ChE, CK-MB and ALB would be 0.232, 0.204, 0.347, and 0.633, respectively, using the t-test.

In clinical and epidemiological studies, the sample size is calculated according to the parameters of
the variables, such as the odds ratio, the probability of the baseline, the confidence lever, the
significance level, etc., and the statistic power can also be calculated with given formulas.

aes | 04335
Glu | 04272
™ | 03659
WBC | 03531
1SS | 03105
Shock | 02716
AIS -APC | 0.2661
Age | 02109
FIB | 0.2005
MAP | 0.1789
Heart rate | 0.1766
AIS-Thorax | 01738
(K | 0.1734
Blood sodium ) 0.1494
Pne-thorax | 0.1362
Gran | 01341
Smoking | 0.1322
Acute lung injury ) 0.1158
PA |—0.1099
Blood transfusion  — 01094
APACHE-II score | 0.1040
SCR s 0.0417
Respiratory rate [ 0.0356
Drinking s 0.0355
Emergency operation o 0.0306
PT s 0.0218
PLT | 00175

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
|ATE| values in causal inference

Figure 4 ATE values in causal inference

Table 6 Performances of the Adaboost+DT model with selected variables

Validation Mode Methods AUC Accuracy Precision Specificity Sensitivity
AdaTree-27 variables 0.915+0.026 | 0.833+0.036 | 0.799+0.060 | 0.823+0.055 | 0.845+0.049
AdaTree(JATE value[>0.1,
0.896+0.032 | 0.815+0.034 | 0.778+0.056 | 0.801+0.054 | 0.832+0.051
|[SHAP value[>0.015)
Internal AdaTree(JATE valuel20.1, 1 ¢g5.0 033 | 079740034 | 0.766£0.057 | 0.796£0.051 | 0.799:0.058
validation ISHAP value[20.020)
AdaTree(|ATE value|>0.1,
0.872+0.034 | 0.787+0.042 | 0.753+0.06 0.782+0.06 .796+0.062
ISHAP value[>0.040) 872+0.03 787+0 753+0.068 782+0.063 | 0.796+0.06.
AdaTree(JATE value[>0.1,
0.830+0.038 | 0.762+0.037 | 0.730+0.065 | 0.770+0.056 | 0.755+0.059
|[SHAP value[>0.050)
AdaTree-27 variables 0.851+£0.008 | 0.751+0.014 | 0.734+0.013 | 0.710+0.017 | 0.793+£0.019
AdaTree(JATE value|>0.1,
. +0. . +0. . +0. . +0. . +0.
ISHAP value[>0.015) 0.843+0.008 | 0.754+0.014 | 0.737+0.013 | 0.715+£0.016 | 0.793+0.020
External AdaTree(|ATE valuel20.1, 1 ¢35.0 008 | 0.756£0.012 | 0.737£0.013 | 0.712£0.019 | 0.799:0.017
validation [SHAP value|>0.020)
AdaTree(JATE value[>0.1,
0.814+0.005 | 0.744+0.015 | 0.731+£0.014 | 0.710+0.017 | 0.778+0.020
|[SHAP value[>0.040)
AdaTree(JATE value[>0.1,
. +0. . +0. . +0. . +0. . +0.
ISHAP value[>0.050) 0.764+0.007 | 0.695+0.013 | 0.673+£0.014 | 0.625+0.023 | 0.765+0.012

In multifactor logistic regression, sample power is closely related to interest variables 3. If only
the statistical characters of the studied data were considered, for the interest variables of FIB, GCS, and
blood transfusion, the sample power of 550 samples could reach 0.987 (using PASS 15.05, OR: 0.632,
Baseline probability: 0.31[11, 16], R-Squared: 0.292, alpha: 0.05, Alternative hypothesis: two-sided),
0.825 (OR: 0.736, Baseline probability: 0.31, R-Squared: 0.243, alpha: 0.05, Alternative hypothesis:
two-sided), and 0.951 (OR: 2.054, Baseline probability: 0.31, Percent with X1=1: 0.44, alpha: 0.05,
Alternative hypothesis: two-sided), respectively. But, for the interest variables such as MAP, Age, Glu,
sample power would decrease to below 0.50. To maintain a high sample power for each interest
variable, for example a sample power of 0.85, more than 165714 samples were needed (The variable
‘Age’ was taken as an example, using PASS 15.05, OR: 1.019, Baseline probability: 0.31, R-Squared:
0.285, alpha: 0.05, Alternative hypothesis: two-sided).
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Nevertheless, this research is more inclined to be a pattern recognition study. ARDS prediction was
carried out only based on sample classification, and statistical features of predictors, as well as
functional relationships between predictors and ARDS outcomes, were not needed to be considered
comparatively.

There is no clear requirement of sample size for pattern recognition. In 9, it was indicated that
samples should be several times the size of the data dimension, and the specific rate was determined by
the optimization objectives. In engineering, a generally accepted option is that the number of samples
should be 10 times the VC dimension of a machine learning model. For example, at least 280 samples
are needed to train an SVM model with a linear kernel and 27 variables, and with an additional
requirement of balanced samples. From this point of view, neural networks need far more samples as
large training parameters are involved. However, with the help of some techniques, such as
regularization and dropout, fewer samples are also acceptable. The VC dimension of the tree models is
adjusted according to the number of leaf nodes *7], and the tree models seemed to be able to reach the
same sample power with a much smaller sample size 48],

The results of this study revealed that new machine learning models have the power to compete
with conventional models in predicting the development of ARDS in patients with severe trauma. Tree
models outperformed other machine learning models in both internal and external validation. However,
according to the above analysis, it was also found that, being limited to the sample size, some machine
learning models did not fully play their due roles. When the sample size is large, other machine
learning methods, such as SVM and neural networks, may get comparable results. Compared to
regression models, tree models have less interpretability. Therefore, in this study the SHAP method was
provided to analyze the importance of each predictor. The essential variables in the prediction model
were also uncovered.

The results of external validation in Table 4 also indicate that although the AdaBoost + DT model
had the best performance, it was not stable. The prediction model training by the XGBoost algorithm
was more stable and also had comparable results. If more stable results are needed, the XGBoost
prediction model can be chosen.

The results of SHAP analysis showed that GCS, ISS, total protein, and blood glucose were the most
important indicators in predicting ARDS in trauma patients. ISS ! 17:221° GCS '7] blood glucose 2%
and total protein ™1 have been reported to be critical predictors associated with the development of
ARDS in patients with severe trauma. And the findings in this study prove these studies. The results in
Figure 2 and Figure 3 also indicate that blood sodium, creatine kinase, mean arterial pressure, AIS
score, age, acute lung injury, APACHE-II score, heart rate, fibrinogen, prealbumin, shock, white blood
cell count, smoking, pneumohemo-thorax, granulocyte and blood transfusion also had informational
value in the prediction of ARDS. And these variables are secondary importance predictors. The results
of casual inference in Table 5 show that whether drinking, respiratory rate, serum creatinine,
prothrombin time, platelet, and emergency operation are factors with spurious correlations with the
development of ARDS needs further investigations. These were inexplicit variables and the results in
Table 6 prove that even if these variables were excluded in the model construction, a similar prediction
performance could also be obtained.

In addition to the above findings, hypertension and diabetes mellitus were found to have no
significant associations with the development of ARDS in patients with severe trauma. This is different
from the research reports in ['7 and %61, It was also found that sex (P=0.063) was not significantly
associated with the development of ARDS in patients with severe trauma. This was consistent with the
reports in the literature 3221, and [2*), but somewhat different from the reports in the literature [1% 1517
181 and [?°!. The reasons for these different findings may be different demographic characteristics, or the
limitation of the patient proportion in this study.

This is a preliminary study and there are some issues that should be discussed and addressed before
clinical application. Regarding the study design, this study was conducted in one medical centre.
Whether the findings can be generalized to other populations needs a further study. The retrospective
nature of the present investigation was also a restriction. Regarding prediction models, since there are
many machine algorithms, maybe another one that performs better can be found further. Being limited
to the sample size in this study, the power of some algorithms has not been fully exploited, especially
the power of neural networks. Also being limited to the sample size and limited to biased data features,
it was inevitable that biased estimates were obtained in the analysis of variable roles. These problems
will be discussed in our further study. With respect to the ARDS prediction, the development of ARDS
is time-varying and is not an absorbing state. The time-varying prediction of ARDS based on time-
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series models is another valuable question in a further discussion. Even so, in clinic, about 90% of
patients with severe trauma developed ARDS 5 days after admission to the ICU and many patients
even developed ARDS earlier P%. For timely support, early detection of the risk of ARDS in patients
with severe trauma is still of great importance.

In summary, this preliminary study established an acceptable prediction model for the development
of ARDS based on predictors that were easily obtained. And this prediction model has the potential for
the early detection of ARDS in patients with severe trauma. Relevant valuable factors for the
development of ARDS were also uncovered.

5. Conclusions

The research objects were patients with severe trauma in the affiliated hospital of Zunyi Medical
University from September 2021 to December 2022. Clinical data was collected and used to predict the
development of ARDS early in patients with severe trauma. The results indicated that the collected data
has a certain value in the prediction of ARDS. Intelligent tree models, particularly the Adaboost + DT
model, can make good use of these data to predict the development of ARDS.
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