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Abstract: The issue of global food security is becoming increasingly severe, and sustainable agricultural 
development has emerged as a focal point of global attention. This study takes rural areas in the 
mountainous regions of North China as the research object, investigating how to optimize planting 
schemes for terraces, sloped fields, irrigated lands, and greenhouses under cold climatic conditions and 
complex arable land environments through scientific crop rotation and intercropping strategies. The aim 
is to enhance farmland utilization efficiency, reduce environmental and market risks, and promote the 
sustainable development of rural economies. This research employs Monte Carlo simulations to estimate 
the expected sales volumes of crops. Based on two scenarios of handling surplus crop production beyond 
the expected sales volume—Scenario 1: disposal as waste; Scenario 2: surplus sold at a 50% discount—
a linear programming model is constructed to optimize crop planting areas and types. The model is 
solved using a genetic algorithm. Comparative analysis of planting strategies under the two scenarios 
yields profitability forecasts for the period from 2024 to 2030. Under the surplus production scenario, 
the seven-year profit for Scenario 1 (disposal as waste) is 7,851,693 RMB, while for Scenario 2 (selling 
surplus at a 50% discount), the profit is 23,868,146 RMB. 
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1. Introduction 

In the context of agricultural modernization and sustainable development, planting strategies in 
mountainous rural areas are no longer confined to mere production functions but also strive to balance 
the efficient utilization of land resources, environmental protection, and economic benefits. By 
optimizing the selection of land and crops, it is possible to increase yields, enhance the long-term 
productivity of land, mitigate risks, and promote the sustainable development of rural economies. 

Zhang Aihua et al. [1] developed a winter wheat irrigation yield model based on a genetic algorithm 
and optimized fertilization decision-making strategies to enhance wheat yield and irrigation efficiency. 
Case studies demonstrated that this technique significantly improved the net value of wheat, achieving 
high-yield and high-quality cultivation with promising application potential and research significance. 
Bi et al. [2] proposed a genetic algorithm (GA)-assisted deep learning method that combines global and 
local search to optimize crop yield prediction models, thereby overcoming the issues of local optima and 
gradient vanishing. The study demonstrated that this method outperformed traditional gradient-based 
approaches in terms of convergence speed and prediction accuracy. 

Building upon the aforementioned studies, this paper takes a rural area in the mountainous regions of 
North China as an example and constructs a linear programming mathematical model. Combining Monte 
Carlo simulation-based expected sales volumes, the model optimizes the planting structure and area 
configuration of crops under two scenarios: surplus as waste and surplus sold at a discount. The model 
incorporates constraints such as land types, crop rotation, and dispersed planting. By solving the model 
with a genetic algorithm, optimal planting strategies are proposed for the period 2024 to 2030, aiming to 
improve agricultural production efficiency. 
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2. Establishment of the optimization model 

The data used in this study are open-source and originate from agricultural planting data of a rural 
area in the mountainous regions of North China. The data were obtained from https://www.mcm.edu.cn/. 

2.1 Data Preprocessing  

The yield per acre, planting cost, and unit selling price were extracted from Attachment 2 and 
preprocessed to identify and handle outliers. The data were processed in Python using the 3σ principle, 
and an outlier detection plot shown in Figure 1 was generated. 

 

Figure 1. Outlier Detection Diagram 

From the outlier detection diagram, it can be observed that the yield per acre for crop number 29 is 
anomalous. Additionally, the planting costs for crop numbers 40 and 41, as well as the selling prices for 
crop numbers 38 and 41, exhibit anomalies. The anomalous data are presented in Table 1. 

Table.1. Details of Abnormal Crops 

Crop Number Crop Name Yield per Acre Planting Cost Selling Price 
29 Cucumber 12000 2900 7 
38 Elm Mushroom 5000 3000 57.5 
40 White Mushroom 10000 10000 16 
41 Morchella 1000 10000 100 

Through practical analysis, it can be observed that cucumbers, as a high-yield crop, can achieve a 
significantly high yield per acre under optimal cultivation conditions, which may lead to elevated 
production data. Therefore, although such data might appear anomalous, they align with the 
characteristics of cucumbers as a crop. Similarly, the golden oyster mushroom, being a premium edible 
fungus, inherently commands a high market price, resulting in a significantly higher unit sales price 
compared to ordinary crops. This price disparity is not anomalous but rather reflects the high economic 
value of golden oyster mushrooms. 
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In contrast, the cultivation of king oyster mushrooms incurs relatively high costs, particularly in 
modern greenhouse environments where expensive facilities and management fees are commonplace. 
These elevated cultivation costs are not unusual. Moreover, the sales price of king oyster mushrooms 
aligns with their high production costs, effectively covering these expenditures. Morel mushrooms, a rare 
and valuable edible fungus, have extremely high cultivation costs and market prices. Due to the 
significant difficulty in their cultivation and the robust market demand, both their production costs and 
sales prices far exceed those of other crops. 

As such, the data flagged as anomalies are, in fact, reasonable and reflect the actual characteristics of 
these crops. Therefore, no outlier processing is performed on this data. 

Since the data sources did not provide the expected sales volumes of various crops, this study 
estimated the expected sales volumes by multiplying the yield of each crop by 0.8, followed by Monte 
Carlo simulation [3]. Table 2 presents the simulated results for selected crops. 

Table 2. The expected sales volumes of different crops. 

Crop 
Name 

2023 2024 2025 2026 2027 2028 2029 2030 

Soybean 31954.72 32047.08 32042.19 31979.33 31856.25 32108.43 32111.3 32124.32 
Black 
Bean 40116.73 40151.54 40094.57 39908.14 39933.74 39909.92 40002.34 39937.94 

Red Bean 32045.05 31991.23 32286.06 32054.92 32104.84 32214.88 31914.89 31883.08 
Mung 
Bean 27908.63 28026.26 28045.82 27881.8 27990.51 27928.72 28057.95 28027.27 

2.2 Definition of Decision Variables 

To address Scenario 1, an optimized planting scheme is proposed to maximize rural crop profits while 
considering the varying demands of different crops and the constraints of specific plots. The model 
accounts for two distinct situations: (1) surplus yield exceeding the expected sales volume leads to unsold 
waste, and (2) the surplus can be sold at half the original price. 

The decision variable  𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 is defined as follows: 𝑖𝑖 ∈ {1,2, … ,𝑁𝑁} represents the 𝑖𝑖 -th plot, 𝑗𝑗 ∈
{1,2, … ,𝑀𝑀} represents the 𝑗𝑗-th crop type,𝑘𝑘 ∈ {1,2}, indicates the season (where 𝑘𝑘 = 1 corresponds to 
the first growing season and 𝑘𝑘 = 2 to the second growing season), and 𝑡𝑡 denotes the year. 

 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 = �1   𝑇𝑇ℎ𝑒𝑒 𝑖𝑖 − 𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗
0   𝑇𝑇ℎ𝑒𝑒 𝑖𝑖 − 𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 (1) 

2.3 Establishing the Objective Function 

To determine the optimal planting scheme that maximizes the total profit of crop cultivation from 
2024 to 2030, this study establishes a linear programming model [4], which considers two scenarios: 
unsold waste and discounted sales. 

For Scenario 1, where the portion of yield exceeding the expected sales volume cannot be sold and 
results in waste, the objective function is defined as shown in Equation (2): 

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = � 
𝑡𝑡∈𝑇𝑇

�  
𝑖𝑖∈𝐼𝐼

�  
𝑗𝑗∈𝐽𝐽

�𝑚𝑚𝑚𝑚𝑚𝑚�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 ,𝐷𝐷𝑗𝑗� × 𝑃𝑃𝑗𝑗 − 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝐶𝐶𝑗𝑗� (2) 

Where 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 represents the area of the 𝑖𝑖-th plot planted with crop 𝑗𝑗 in year 𝑡𝑡, and 𝑌𝑌𝑗𝑗 denotes the 
yield per unit area of crop 𝑗𝑗. 𝑃𝑃𝑗𝑗  is the selling price of crop 𝑗𝑗, and 𝐶𝐶𝑗𝑗  is the planting cost of crop 𝑗𝑗. The 
term 𝑚𝑚𝑚𝑚𝑚𝑚�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 ,𝐷𝐷𝑗𝑗� indicates the smaller value between the yield of crop 𝑗𝑗 and the market demand, 
representing the actual sales volume. 

For Scenario 2, where the surplus yield exceeding the expected sales volume is sold at a 50% discount, 
the objective function is defined as shown in Equation (3) to Equation (5): 

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = � 
𝑡𝑡∈𝑇𝑇

�  
𝑖𝑖∈𝐼𝐼

�  
𝑗𝑗∈𝐽𝐽

�𝑚𝑚𝑚𝑚𝑚𝑚�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 ,𝐷𝐷𝑗𝑗� × 𝑃𝑃𝑗𝑗 + max�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 − 𝐷𝐷𝑗𝑗 , 0� × 𝑃𝑃′𝑗𝑗 − 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝐶𝐶𝑗𝑗  (3) 
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𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 = �  𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ×
𝑖𝑖

𝑌𝑌𝑗𝑗 (4) 

𝑃𝑃′𝑗𝑗 = 0.5 × 𝑃𝑃𝑗𝑗 (5) 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 ,𝐷𝐷𝑗𝑗� represents the actual sales volume of crop 𝑗𝑗 grown on the 𝑖𝑖-th plot during the 𝑘𝑘-th 
season, which is the smaller value between the total yield and market demand. 

max�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 − 𝐷𝐷𝑗𝑗 , 0� denotes the surplus yield of crop 𝑗𝑗 that exceeds the expected sales volume. 

2.4 Constraints 

(1) Plot Area Constraint 

The total planting area of the 𝑖𝑖-th plot in any given year cannot exceed its available area 𝐿𝐿𝑖𝑖. This 
constraint is expressed as shown in Equation (6): 

� 
𝑗𝑗∈𝐽𝐽

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 ≤ 𝐿𝐿𝑖𝑖    ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑡𝑡 ∈ 𝑇𝑇 (6) 

(2) Crop Yield and Sales Constraint 

The actual sales volume of each crop cannot exceed its total yield. This constraint is expressed as 
shown in Equation (7): 

� 
𝑖𝑖∈𝐼𝐼

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝑌𝑌𝑗𝑗 ≥ 𝐷𝐷𝑗𝑗     ∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇 (7) 

(3) Plot Type Constraint 

Different types of plots are restricted to specific crops. Flat dryland, terraced fields, and slopes can 
only grow one season of grain crops; irrigated land can grow either one season of rice or two seasons of 
vegetables; ordinary greenhouses can grow one season of vegetables and one season of edible fungi; 
smart greenhouses can grow two seasons of vegetables. If crop 𝑗𝑗 is not suitable for planting on plot 
type 𝑅𝑅𝑖𝑖, the planting area of crop 𝑗𝑗 on the plot must be 0, as expressed in Equation (8): 

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 = 0 (8) 

Additional planting constraints are applied based on different plot types. Flat dryland, terraced fields, 
and slopes can only grow one season of grain crops. For these plot types 
𝑅𝑅𝑖𝑖 ∈{Flat Dryland, Terraced Fields, Slopes}, only one season of grain crops is allowed, as expressed in 
Equation (9). 

� 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡 = 1  𝑅𝑅𝑖𝑖
𝑗𝑗∈Grain

∈ �Flat Dryland,  Terraced Fields,  Slopes� (9) 

Additionally, planting in the second season is prohibited for these plot types, as expressed in Equation 
(10): 

�𝑥𝑥𝑖𝑖,𝑗𝑗,2,𝑡𝑡

𝑀𝑀

𝑗𝑗=1

= 0    𝑅𝑅𝑖𝑖 ∈ �Flat Dryland,  Terraced Fields,  Slopes� (10) 

Irrigated land can either grow one season of rice or two seasons of vegetables. For irrigated land, one 
season of rice or two seasons of vegetables must be planted, as expressed in Equation (11): 

� 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡 + � 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡

𝑗𝑗∈Two−Season Vegetables

= 1   𝑅𝑅𝑖𝑖
𝑗𝑗∈Rice

= Irrigated Land (11) 

Ordinary greenhouses must grow one season of vegetables and one season of edible fungi. For 
ordinary greenhouses, one season of vegetables is required, as expressed in Equation (10), and one season 
of edible fungi is required, as expressed in Equation (12): 

� 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡 = 1  𝑅𝑅𝑖𝑖 = Ordinary Greenhouse
𝑗𝑗∈One−Season Vegetables

(12) 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 2: 73-82, DOI: 10.25236/AJCIS.2025.080210 

Published by Francis Academic Press, UK 
-77- 

� 𝑥𝑥𝑖𝑖,𝑗𝑗,2,𝑡𝑡 = 1   𝑅𝑅𝑖𝑖
𝑗𝑗∈Edible Fungi

= Ordinary Greenhouse (13) 

Smart greenhouses are suitable for planting two seasons of vegetables each year. This is expressed in 
Equations (14) and (15): 

� 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡 = 1   𝑅𝑅𝑖𝑖 = Smart Greenhouse
𝑗𝑗∈Two−Season Vegetables

(14) 

� 𝑥𝑥𝑖𝑖,𝑗𝑗,2,𝑡𝑡 = 1   𝑅𝑅𝑖𝑖 = Smart Greenhouse
𝑗𝑗∈Two−Season Vegetables

(15) 

(4) Crop Rotation Constraint 

To prevent excessive depletion of soil nutrients, the same type of crop cannot be planted 
consecutively on the same plot. This constraint is expressed as shown in Equation (16): 

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡−1 = 0      ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇 (16) 

(5) Legume Crop Constraint 

Each plot or greenhouse must plant legume crops at least once within three years to ensure crop 
rotation requirements are met. This constraint is expressed as shown in Equation (17): 

� � 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑗𝑗∈Legumes

𝑡𝑡0+2

𝑡𝑡=𝑡𝑡0

≥ 1        ∀𝑖𝑖 ∈ 𝐼𝐼 (17) 

(6) Minimum Planting Area Constraint 

To prevent scattered planting, the planting area of each crop on any plot must not be too small and 
must meet a threshold 𝑇𝑇𝑗𝑗. In this study, the threshold is set to 0.1. This constraint is expressed as shown 
in Equation (18): 

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 ≥ 0.1        ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇 (18) 

2.5 Model Establishment 

Firstly, based on the 2023 production data of various crops, Monte Carlo simulation was used to 
estimate their expected sales volumes, which were further utilized to project the expected sales volumes 
of different crops from 2024 to 2030. Secondly, genetic algorithms were employed, considering several 
constraints to optimize the crop planting plan [5]. Due to the limited land area of each plot, it is necessary 
to constrain the total planting area of each crop within each plot. Based on practical experience, sales 
volumes cannot exceed production, requiring constraints on their relationship. Furthermore, since not all 
plots are suitable for all crops, constraints were established to define the types of crops that can be planted 
on each plot. To preserve soil nutrients, constraints were set to prevent continuous cropping. Additionally, 
the rhizobia in leguminous crops aid nitrogen fixation, improve soil composition, and promote the yield 
of other crops, making it essential to introduce constraints to retain this effect. To facilitate farming 
operations, reducing the dispersion of crop planting across plots is advisable, which requires the 
establishment of planting area threshold constraints. These measures collectively optimize the crop 
planting strategy for the period from 2024 to 2030. 

For Scenario 1, the portion exceeding the expected sales volume is considered waste, resulting in the 
final optimization model as shown in Equation (19): 

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = � 
𝑡𝑡∈𝑇𝑇

�  
𝑖𝑖∈𝐼𝐼

�  
𝑗𝑗∈𝐽𝐽

�𝑚𝑚𝑚𝑚𝑚𝑚�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 ,𝐷𝐷𝑗𝑗� × 𝑃𝑃𝑗𝑗 − 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝐶𝐶𝑗𝑗� (19) 

For Scenario 2, the portion exceeding the expected sales volume is sold at a 50% discount, resulting 
in the final optimization model as shown in Equation (20): 

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = � 
𝑡𝑡∈𝑇𝑇

�  
𝑖𝑖∈𝐼𝐼

�  
𝑗𝑗∈𝐽𝐽

�𝑚𝑚𝑚𝑚𝑚𝑚�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 ,𝐷𝐷𝑗𝑗� × 𝑃𝑃𝑗𝑗 + max�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 − 𝐷𝐷𝑗𝑗 , 0� × 𝑃𝑃′𝑗𝑗 − 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝐶𝐶𝑗𝑗  (20) 

Where: 
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𝑦𝑦𝑗𝑗,𝑘𝑘,𝑡𝑡 = �  𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 ×
𝑖𝑖

𝑌𝑌𝑗𝑗 (21) 

𝑃𝑃′𝑗𝑗 = 0.5 × 𝑃𝑃𝑗𝑗 (22) 

𝑠𝑠. 𝑡𝑡

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧� 
𝑗𝑗∈𝐽𝐽

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 ≤ 𝐿𝐿𝑖𝑖    ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑡𝑡 ∈ 𝑇𝑇

�  
𝑖𝑖∈𝐼𝐼

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝑌𝑌𝑗𝑗 ≥ 𝐷𝐷𝑗𝑗     ∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 = 0

� 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡 = 1  𝑅𝑅𝑖𝑖
𝑗𝑗∈Grain

∈ �Flat Dryland,  Terraced Fields,  Slopes�

�𝑥𝑥𝑖𝑖,𝑗𝑗,2,𝑡𝑡

𝑀𝑀

𝑗𝑗=1

= 0    𝑅𝑅𝑖𝑖 ∈ �Flat Dryland,  Terraced Fields,  Slopes�

� 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡 + � 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡

𝑗𝑗∈Two−Season Vegetables

= 1   𝑅𝑅𝑖𝑖
𝑗𝑗∈Rice

= Irrigated Land

� 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡 = 1  𝑅𝑅𝑖𝑖 = Ordinary Greenhouse
𝑗𝑗∈One−Season Vegetables

� 𝑥𝑥𝑖𝑖,𝑗𝑗,2,𝑡𝑡 = 1   𝑅𝑅𝑖𝑖
𝑗𝑗∈Edible Fungi

= Ordinary Greenhouse

� 𝑥𝑥𝑖𝑖,𝑗𝑗,1,𝑡𝑡 = 1   𝑅𝑅𝑖𝑖 = Smart Greenhouse
𝑗𝑗∈Two−Season Vegetables

� 𝑥𝑥𝑖𝑖,𝑗𝑗,2,𝑡𝑡 = 1   𝑅𝑅𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑗𝑗∈𝑇𝑇𝑇𝑇𝑇𝑇−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡−1 = 0      ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇

� � 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑗𝑗∈Legumes

𝑡𝑡0+2

𝑡𝑡=𝑡𝑡0

≥ 1        ∀𝑖𝑖 ∈ 𝐼𝐼

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 ≥ 0.1        ∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑡𝑡 ∈ 𝑇𝑇

(23) 

3. Results 

After constructing the linear programming model, this study employs a genetic algorithm to solve the 
optimization problem. The initial population is defined as 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥7×𝑁𝑁], where 𝑁𝑁 represents 
the number of plots. The algorithm parameters are set as follows: maximum iteration count 𝑇𝑇 = 7, 
crossover probability 𝑃𝑃𝑐𝑐 = 0.9, mutation probability 𝑃𝑃𝑚𝑚 = 0.1, and generation gap 𝐺𝐺𝐺𝐺𝐺𝐺 = 0.7. The 
algorithm steps are outlined as follows: 

Step 1: Generate the initial population with a size of 7×N. 

Step 2: Calculate the fitness of each individual. 

Step 3: Perform tournament selection based on fitness to retain the best individuals. 

Step 4: Use single-point crossover to produce new offspring. 

Step 5: Apply random mutation to some individuals to increase population diversity. 

Step 6: Evaluate the fitness of the new offspring. 

Step 7: If the termination condition is met, output the optimal individual; otherwise, return to Step 3 
and continue iterating. 

Following the steps outlined above, the problem was solved using MATLAB, where the fitness 
function corresponds to the objective function of each specific scenario. Finally, the genetic algorithm 
fitness curve for Scenario 1 was plotted, as shown in Figure 2. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 2: 73-82, DOI: 10.25236/AJCIS.2025.080210 

Published by Francis Academic Press, UK 
-79- 

 

Figure 2. Fitness Curve of the Genetic Algorithm for Scenario 1 

In Scenario 1, the portion exceeding the expected sales volume cannot be sold as usual. The fitness 
curve of the genetic algorithm shows that the solid black line represents the penalty value of the optimal 
individual in each generation. It is evident that the penalty value is relatively high at the initial stage and 
gradually decreases as the number of generations increases. By the end of the iterations, the penalty value 
of the optimal solution reaches 0.631579, indicating that the algorithm has identified a relatively optimal 
solution. Throughout the process, the penalty value decreases in a stepwise manner, demonstrating that 
the designed genetic algorithm can continuously improve the optimal solution. The dashed blue line 
represents the average penalty value of all individuals in each generation. During the first 50 generations, 
the average penalty value decreases rapidly, indicating a gradual improvement in the quality of most 
individuals in the population. From approximately the 100th generation, the average penalty value 
stabilizes with minor fluctuations, suggesting the presence of multiple local optima within the population 
at this stage. In the final dozens of generations, the average penalty value remains around 0.63, indicating 
minimal variation in the overall solution quality and that the population has largely converged. 

The crop planting conditions for certain plots in different years are calculated and illustrated in 
Figures 3 to 5. 

 
Figure 3. Crop planting distribution for certain plots under Scenario 1 in 2024. 

 
Figure 4. Crop planting distribution for certain plots under Scenario 1 in 2025. 
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Figure 5. Crop planting distribution for certain plots under Scenario 1 in 2026. 

From the figures, it is evident that the types of crops planted on different plots vary and adhere to the 
constraints of each plot type. Additionally, the planting scheme satisfies the requirements for crop 
diversity and legume crop rotation outlined in the problem, particularly avoiding consecutive planting of 
the same crop (repeated cropping). The genetic algorithm fitness curve under Scenario 2 is shown in 
Figure 6. 

 
Figure 6. Genetic algorithm fitness curve for Scenario 2. 

The figure shows a significant decline in the optimal penalty value at the early stages of the algorithm, 
particularly in the first 50 generations, where the optimal value drops rapidly from approximately 1.1 to 
around 0.7. This indicates that most of the poorer solutions were quickly eliminated in the initial phase, 
and the algorithm identified higher-quality solutions. Furthermore, the average solution quality stabilizes 
toward the end, with most solutions converging to similar quality levels. This demonstrates that the 
genetic algorithm achieved notable optimization performance and successfully identified a near-optimal 
solution. The crop planting distributions for certain plots in different years under Scenario 2 are shown 
in Figures 7 to 9: 

 

Figure 7. Crop planting distribution for certain plots under Scenario 2 in 2024. 
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Figure 8. Crop planting distribution for certain plots under Scenario 2 in 2025. 

 
Figure 9. Crop planting distribution for certain plots under Scenario 2 in 2026. 

From the figures, it is evident that Scenario 2 also satisfies the relevant constraints. According to the 
scenario's settings, surplus yields beyond expected sales volumes are sold at a discounted price. This 
means that for high-yield crops, the excess yield results in reduced profits but still contributes to total 
sales. Under this sales strategy, high-yield crops have a significant proportion of surplus sold at a 50% 
discount, reducing per-unit profit but contributing to overall sales volume. Medium-yield crops produce 
less surplus compared to high-yield crops but still generate some additional sales. For low-yield crops, 
there is almost no surplus beyond the expected sales volume, allowing them to be sold at full price and 
maintain a high profit margin. 

The total profit over 7 years for Scenario 1 is calculated to be CNY 7,851,693, with the annual profit 
results shown in Table 3: 

Table.3. Annual Total Profit for Scenario 1 

Year 2024 2025 2026 2027 2028 2029 2030 
Profit(CNY) 1147824 1022894 1181217 1147824 1022894 1181217 1147823 

The total profit over 7 years for Scenario 2 is calculated to be CNY 23,868,146, with the annual profit 
results shown in Table 4: 

Table.4. Annual Total Profit for Scenario 2 

Year 2024 2025 2026 2027 2028 2029 2030 
Profit(CNY) 3993191 3304977 3986200 2772734 3761774 2637214 3412057 

4. Conclusions 

This study takes rural areas in the mountainous regions of northern China as an example to develop a 
linear programming model that integrates Monte Carlo simulation and genetic algorithms. The model is 
designed to optimize crop planting structures and areas under different surplus sales scenarios, aiming to 
enhance agricultural production efficiency and maximize profits. By fully accounting for plot 
characteristics and planting constraints, the model demonstrates high practicality and accuracy. It 
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effectively reduces unsold waste, increases profits, and adapts to diverse regions and climatic conditions, 
making it highly transferable. Additionally, by incorporating weather forecasting and disaster prevention 
mechanisms, the model helps producers address challenges posed by extreme weather due to climate 
change, thereby improving the adaptability and sustainability of agricultural systems. It is applicable to 
optimizing production, processing, and sales across all stages of the agricultural value chain. 

While the linear programming model, combined with genetic algorithms and Monte Carlo simulation, 
significantly improves the precision of planting schemes, it heavily depends on meteorological data and 
market demand. Furthermore, as the number of crop types and years increases, the solution space grows 
exponentially, resulting in high computational complexity. The model also exhibits certain limitations in 
responding to extreme weather and performing real-time dynamic adjustments. To address the rapid 
expansion of the solution space with the increase in plots, crop types, and planning years, parallel 
computing or distributed optimization techniques can be employed to decompose the problem into sub-
problems for simultaneous processing. This approach can significantly reduce computation time and 
enhance the efficiency of large-scale agricultural planning. 
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