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Abstract: The detection of anomalies in graph data is a critical task across various domains, such as 
fraud detection in social and commercial networks. Traditional Graph Neural Network (GNN) models 
often struggle with dataset biases, including label bias and keyword bias, which impair their 
generalization abilities. This paper introduces a novel Debiasing Frequency Adaptive GNN (DFA-GNN) 
that addresses these challenges by enhancing model accuracy and reducing dataset biases. Unlike 
previous approaches, DFA-GNN adapts to the complexity of node relationships and the frequency of 
interaction signals, making it particularly effective for node-based anomaly detection. By decomposing 
the input graph into several relation graphs and employing a frequency adjusting filter, DFA-GNN 
selectively processes signals of varying frequencies, catering to both homophily and heterophily 
conditions. Additionally, our counterfactual inference mechanism mitigates unintended dataset biases, 
further enhancing the model's prediction accuracy. Our extensive experiments on fraud detection 
datasets such as Yelp have shown that DFA-GNN has excellent performance in identifying subtle and 
complex anomalies, outperforming existing models in accuracy and debiasing ability. 
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1. Introduction  

In the digital era, fraud detection has emerged as a paramount challenge across various platforms[2], 
including e-commerce, social networks, and financial systems. GNN-based models excel in capturing 
complex interactions between entities, making them particularly suited for identifying fraudulent 
activities. However, current models often struggle with dataset biases[5], including label and keyword 
biases, which can severely impact the generalizability and fairness of fraud detection systems. These 
biases can lead to overfitting on specific data distributions, rendering models less effective when 
confronted with new or evolving fraudulent schemes. Addressing these challenges, we introduce a novel 
GNN-based model that significantly enhances fraud detection capabilities in the face of heterophily and 
dataset biases. Our model employs a debiasing frequency adaptive mechanism. This mechanism allows 
for dynamic adjustment to the model's focus, enabling it to capture both low-frequency and high-
frequency signal patterns within the graph[6]. Furthermore, our approach integrates a counterfactual 
inference [9] to mitigate the effects of dataset biases, enhancing the model's robustness and ensuring fairer 
fraud detection outcomes. Through extensive experiments on anomaly detection datasets, our model 
demonstrates good performance in detecting camouflaged fraudsters, outperforming existing 
benchmarks in both accuracy and debiasing capabilities. 

The paper’s contributions are as follows: We propose a novel GNN architecture that effectively 
addresses these challenges through a debiasing frequency adaptive mechanism and counterfactual 
inference, enhancing the model's ability to detect camouflaged fraudsters. We have validated its potential 
in advancing the field of graph anomaly detection through extensive experiments conducted on real-
world datasets. 

2. Methodology 

In this work, our goal is to process graphs with fraudsters to demonstrate the role of the model in the 
field of fraud detection. The framework of DFA-GNN consists of relation learning module, frequency 
adjusting module and dataset debiasing module. In Figure 1, as you can see, we can clearly see the overall 
framework of the model. Given an input graph 𝒢𝒢 = (𝜈𝜈, 𝜀𝜀), comprised of a set 𝜐𝜐 representing 𝑁𝑁 nodes 
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characterized by features 𝜒𝜒 = (𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁) ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑  and an edge set 𝜀𝜀 ⊆ 𝜐𝜐 × 𝜐𝜐, where each node 
𝑣𝑣 ∈ 𝜐𝜐 has feature, so let’s use 𝑥𝑥𝑣𝑣 ∈ 𝜒𝜒 to represent it. Each edge 𝑒𝑒𝑢𝑢,𝑣𝑣 ∈ 𝜀𝜀. 

 
Figure 1: DFA-GNN framework. 

2.1. Relation Learning Module 

We set the objective of the relation learning unit to separate the input graph 𝜍𝜍 = (𝜐𝜐, 𝜀𝜀), so the graph 
𝜍𝜍 becomes 𝐾𝐾 relation graphs {𝐺𝐺𝑘𝑘}𝑘𝑘=1𝐾𝐾 . We can imagine it as approximate 𝜙𝜙−1(∙) with 𝜓𝜓(⋅). ℎ𝑖𝑖′ =
𝑊𝑊𝑥𝑥𝑖𝑖, where 𝑊𝑊 ∈ 𝑅𝑅𝐹𝐹′×𝑑𝑑 and 𝐹𝐹′ is the dimension of hidden space. In the initial step, we make the input 
nodes into a lower-dimensional space. In next step, the relation coefficients between nodes 𝑖𝑖 and 𝑗𝑗 
regarding relation 𝑘𝑘(1 ≤ 𝑘𝑘 ≤ 𝐾𝐾) is as follows: 

𝐺𝐺𝑘𝑘,𝑖𝑖,𝑗𝑗 = 𝜎𝜎(Ω𝑘𝑘(ℎ𝑖𝑖′,ℎ𝑗𝑗′))                               (1) 

where 𝜎𝜎 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(⋅) and 𝛺𝛺𝑘𝑘(⋅) is structured as MLP. A particular relation graph 𝐺𝐺𝑘𝑘  can be on 
behalf of a relation 𝑘𝑘, as all the coefficients are computed. We learn a graph label 𝑐𝑐𝑘𝑘 ∈ 𝑅𝑅𝐾𝐾 for each 
relation graph 𝐺𝐺𝑘𝑘 to guarantee that the learned {𝐺𝐺𝑘𝑘}𝑘𝑘=1𝐾𝐾  is distinctive. Graph label is defined as 

𝑐𝑐𝑘𝑘 = 𝜎𝜎(𝑓𝑓(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺𝑘𝑘,𝐻𝐻′))))                          (2) 

where 𝐺𝐺𝐺𝐺𝐺𝐺(⋅)  is a two-layer GAE[12] which generates new features for each node. 𝐻𝐻 =
(ℎ1′ ,ℎ2′ , . . . ,ℎ𝑁𝑁′ )  and relation graph 𝐺𝐺𝑘𝑘  are inputs. 𝑓𝑓(⋅)  is a fully connected layer. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(⋅) 
conducts global average pooling and 𝜎𝜎(⋅) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚( ⋅) . By maximizing the differences between 
different {𝑐𝑐𝑘𝑘}𝑘𝑘=1𝐾𝐾 , the relation learning module maximize the differences between those relation graphs 
{𝐺𝐺𝑘𝑘}𝑘𝑘=1𝐾𝐾  indirectly and we define the loss function training the graph discriminator as 

𝐿𝐿𝑑𝑑 = − 1
𝐾𝐾
∑ 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑐𝑐𝑘𝑘[𝑘𝑘])𝐾𝐾
𝑘𝑘=1                             (3) 

where 𝑐𝑐𝑘𝑘 is predicted label distribution vector, 𝑐𝑐𝑘𝑘[𝑘𝑘] is its 𝑘𝑘𝑘𝑘ℎ element in relation graph 𝐺𝐺𝑘𝑘. 

2.2. Frequency adjusting Module 

The aim of frequency adjusting unit is to pick signals of various frequencies adaptively, with the 
frequency adjusting filter playing an important role. For the convolution kernel 𝑓𝑓 and signal 𝑥𝑥, the 
convolutional ∗𝐺𝐺 is 

𝑓𝑓 ∗𝐺𝐺 𝑥𝑥 = 𝑈𝑈((𝑈𝑈𝑇𝑇𝑓𝑓)⨀(𝑈𝑈𝑇𝑇𝑥𝑥)) = 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈𝑇𝑇𝑥𝑥                      (4) 

where 𝑔𝑔𝜃𝜃  denotes a diagonal matrix and ⨀  is the elementwise product of two vectors. 
Parameterizing 𝑔𝑔𝜃𝜃 with a polynomial expansion  𝑔𝑔𝜃𝜃 = ∑ 𝑎𝑎𝑘𝑘𝛬𝛬𝑘𝑘𝐾𝐾−1

𝑘𝑘=0  by GCN-Cheby. The convolutional 
kernel[13] is 𝑔𝑔𝜃𝜃 = 𝛪𝛪 − 𝛬𝛬 in GCN. In raw features, the frequency adjusting filter can choose the high- and 
low- frequency signals[14] adaptively, which is as follows: 

𝐹𝐹𝐴𝐴 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝐷𝐷�−1 2⁄ 𝐴̃𝐴𝐷𝐷�−1 2⁄ = (𝛼𝛼 + 𝛽𝛽)𝐼𝐼 − 𝛽𝛽𝛽𝛽                   (5) 

where 𝛽𝛽 is a learnable parameter. 𝛼𝛼 is a scaling hyperparameter and 𝛼𝛼 ∈ (0，1]. The convolutional 
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kernel 𝑓𝑓 is replaced by 𝐹𝐹𝐴𝐴, so the signal 𝑥𝑥 is filtered by 𝐹𝐹𝐴𝐴 as 

𝐹𝐹𝐴𝐴 ∗𝐺𝐺 𝑥𝑥 = 𝑈𝑈[(𝛼𝛼 + 𝛽𝛽)𝐼𝐼 − 𝛽𝛽Λ]𝑈𝑈𝑇𝑇𝑥𝑥.                         (6) 

Therefore, the convolutional kernel of 𝐹𝐹𝐴𝐴  become 𝑔𝑔𝜃𝜃 = (𝛼𝛼 + 𝛽𝛽)𝐼𝐼 − 𝛽𝛽𝛽𝛽  , that is, 𝑔𝑔𝜃𝜃(𝜆𝜆𝑖𝑖) = 𝛼𝛼 +
𝛽𝛽 − 𝛽𝛽𝜆𝜆𝑖𝑖 . When 𝛽𝛽 < 0 , 𝐹𝐹𝐴𝐴  is a high-pass filter[8]; When 𝛽𝛽 > 0,  𝐹𝐹𝐴𝐴  is a low-pass filter. Hence, a 
adaptive and shared mechanism is used to learn {𝛽𝛽𝑖𝑖,𝑗𝑗}𝑖𝑖,𝑗𝑗=1𝑁𝑁 , which are local node-specific frequency 
coefficients and given by 

𝛽𝛽𝑖𝑖,𝑗𝑗 = 𝜎𝜎�𝑎𝑎𝑇𝑇�ℎ𝑖𝑖‖ℎ𝑗𝑗��                                (7) 

where 𝑎𝑎 ∈ 𝑅𝑅2𝐹𝐹 is a shared convolutional kernel and ℎ𝑖𝑖‖ℎ𝑗𝑗 is the concatenation operation. 𝜎𝜎(⋅) =
𝑡𝑡𝑡𝑡𝑡𝑡ℎ( ⋅). After calculating {𝛽𝛽𝑖𝑖,𝑗𝑗}𝑖𝑖,𝑗𝑗=1𝑁𝑁 , the features of neighbor node can be aggregated by: 

ℎ𝚤𝚤� = 𝛼𝛼ℎ𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖,𝑗𝑗

�|𝑁𝑁𝑖𝑖|�𝑁𝑁𝑗𝑗�
𝑗𝑗∈𝑁𝑁𝑖𝑖 ℎ𝑗𝑗                              (8) 

where the neighborhood nodes of nodes i and j are 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑗𝑗. 

2.3. Dataset Debiasing Module 

Let X𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑌𝑌 respectively denote the input (text features) and output (category) spaces. The core 
idea of CORSAIR[9] is as follows: We firstly train a "poisoned" classifier without considering the bias of 
the dataset. According to the reasons for the biases, we post-adjust the biased predictions in inference. 
CORSAIR has three main sections which are biased learning, bias distillation, and bias removal. 

2.3.1. Label Bias Distillation 

The in-coming links of a cause variable 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  are eliminated by causal intervention operation. In 
pursuit of this objective, we designate 𝑥𝑥�  to represent the conceived fully blindfolded counterfactual 
dataset. To generate a counterfactual embedding, all words within the test dataset 𝑥𝑥 are uniformly masked.  
The corresponding counterfactual output, denoted as 𝑓𝑓(𝑥𝑥�), is obtained through a feedforward process 
using the trained model. Consequently, the fully blindfolded counterfactual output can be expressed as: 

𝑃𝑃�𝑌𝑌�𝑑𝑑𝑑𝑑(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)� = 𝑓𝑓(𝑥𝑥�) = 𝑓𝑓(〈𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛〉)
∀𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥�,𝑤𝑤𝑖𝑖 ← [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀]

                     (9) 

Manifests as the label bias captured by the trained model 𝑀𝑀 , with the placeholder [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀] 
representing a special mark used for single-word masking. In practice, we utilize the average text feature 
across the entire training set as the embedding for the counterfactual dataset. 

2.3.2. Keyword Bias Distillation 

Partially blindfolded counterfactual dataset can also be used to removing bias[1]. We use an effective 
masking strategy to extract the main content of the text features by use discriminative text summarization 
methods. We mask content words which are important classification clues and subsequently expose others 
as potentially harmful biasing factors. Thus, the partially blindfolded counterfactual output: 

𝑓𝑓(𝑥𝑥�) = 𝑓𝑓(⟨𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛⟩)

∀𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥�, �𝑤𝑤𝑖𝑖 ←
[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀]  if 𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖             if 𝑤𝑤𝑖𝑖 ∈ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
                      (10) 

Reflects as the keyword bias captured by model 𝑀𝑀, where 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the context and 
the main content of 𝑥𝑥. We can employ the Jieba tool to implement discriminative text summarization as 
its TextRank-based interface can identify words that are likely to impact the semantic meaning of a 
sentence, designating them as content. Conversely, words deemed potentially discriminatory or unfair, 
such as stop words, are retained as context. 

2.4. DFA-GNN Architecture 

Firstly, the input nodes are transformed to a low-dimensional space, ℎ𝑖𝑖,𝑘𝑘
(0) = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑖𝑖), where 1 ≤ 𝑘𝑘 ≤

𝐾𝐾 , 𝜎𝜎(⋅) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(⋅)  and the shared weight matrices are 𝑊𝑊 ∈ 𝑅𝑅𝐹𝐹×𝑑𝑑 . Subsequently, we execute the 
relation-based multihop frequency adjusting message-passing through iteration 𝑆𝑆, as follows: 
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ℎ𝑖𝑖,𝑘𝑘
(𝑠𝑠) = 𝛼𝛼ℎ𝑖𝑖,𝑘𝑘

(0) + (1 − 𝛼𝛼)∑
𝛽𝛽𝑘𝑘,𝑖𝑖,𝑗𝑗

(𝑠𝑠−1)

��𝑁𝑁𝑖𝑖,𝑘𝑘��𝑁𝑁𝑗𝑗,𝑘𝑘�
ℎ𝑗𝑗,𝑘𝑘

(𝑠𝑠−1)
𝑗𝑗∈𝑁𝑁𝑖𝑖,𝑘𝑘                    (11) 

for relation 𝑘𝑘 in the 𝑠𝑠th iteration, ℎ𝑖𝑖,𝑘𝑘
(𝑠𝑠)(1 ≤ 𝑠𝑠 ≤ 𝑆𝑆) is the representation of node 𝑖𝑖. Between nodes 

𝑖𝑖 and 𝑗𝑗 for relation 𝑘𝑘, 𝛽𝛽𝑘𝑘,𝑖𝑖,𝑗𝑗
(𝑠𝑠−1) is the frequency factor of the s-order message. 𝑁𝑁𝑖𝑖,𝑘𝑘 is the neighborhood 

of node 𝑖𝑖 in relation graph 𝐺𝐺𝑘𝑘. 𝛽𝛽𝑘𝑘,𝑖𝑖,𝑗𝑗
(𝑠𝑠−1) is defined as 

𝛽𝛽𝑘𝑘,𝑖𝑖,𝑗𝑗
(0) = 𝐺𝐺𝑘𝑘,𝑖𝑖,𝑗𝑗    𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠 = 1

𝛽𝛽𝑘𝑘,𝑖𝑖,𝑗𝑗
(𝑠𝑠−1) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ�𝑎𝑎𝑠𝑠,𝑘𝑘

𝛵𝛵 �ℎ𝑖𝑖,𝑘𝑘
(𝑠𝑠−1)�ℎ𝑗𝑗,𝑘𝑘

(𝑠𝑠−1)��   𝑓𝑓𝑓𝑓𝑓𝑓 2 ≤ 𝑠𝑠 ≤ 𝑆𝑆
              (12) 

for relation 𝑘𝑘 in the 𝑠𝑠th iteration, 𝑎𝑎s,k ∈ 𝑅𝑅1×2𝐹𝐹 is the attention coefficient. Finally, output features 
are acquired through 

𝑧𝑧𝑖𝑖=‖𝑘𝑘=1𝐾𝐾 �𝑊𝑊�𝑘𝑘ℎ𝑖𝑖,𝑘𝑘
(𝑆𝑆)�                               (13) 

where 𝑊𝑊�𝑘𝑘 ∈ 𝑅𝑅𝐹𝐹×𝐹𝐹 is the weight matrix regarding relation 𝑘𝑘. 

In the testing phase, we use the Dataset Debiasing Module for bias removal. We assume that 𝑓𝑓(𝑥𝑥) 
and 𝑐𝑐(𝑥𝑥)  respectively represent traditional factual prediction and our counterfactual prediction.  
Mitigating the label bias and keyword bias inherent in the training data is our final objective, by leveraging 
the direct effect from 𝑋𝑋 to 𝑌𝑌 for debiased prediction. Process can be formalized as  

𝑐𝑐(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − 𝜆̂𝜆𝑓𝑓(𝑥𝑥�) − 𝜆̃𝜆𝑓𝑓(𝑥𝑥�)                           (14) 

where 𝑓𝑓(𝑥𝑥�) and 𝑓𝑓(𝑥𝑥�) respectively represent the label bias and the keyword bias distilled from the 
trained base model; 𝜆̂𝜆 and 𝜆̃𝜆 is factors balancing two biases. To search two adaptive parameters on the 
validation set, we introduce the elastic scaling mechanism, which use scaling factors 𝜆̂𝜆∗ and 𝜆̃𝜆∗. Elastic 
scaling can be executed through grid beam search[3] within a scoped two-dimensional space: 

𝜆̂𝜆∗, 𝜆̃𝜆∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆�,𝜆𝜆�

𝜓𝜓 �𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑, 𝑐𝑐�𝑥𝑥; 𝜆̂𝜆, 𝜆̃𝜆��   𝜆̂𝜆, 𝜆̃𝜆 ∈ [𝑎𝑎, 𝑏𝑏]               (15) 

where 𝜓𝜓 is a metric function (such as recall) on the validation set 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑,𝑌𝑌𝑑𝑑𝑑𝑑𝑑𝑑). 

2.5. Loss Function 

The total loss function is denoted as 𝐿𝐿 = 𝐿𝐿𝑡𝑡 + 𝛾𝛾 ∗ 𝐿𝐿𝑑𝑑 . 𝐿𝐿𝑑𝑑  is the loss of graph discriminator, as 
discussed in (3). The weight balancing these two losses is 𝛾𝛾. The loss 𝐿𝐿𝑡𝑡 is defined as: 

𝐿𝐿𝑡𝑡 = 1
|𝑉𝑉𝐿𝐿|

∑ ∑ 𝑦𝑦𝑖𝑖,𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦�𝑖𝑖,𝑐𝑐𝐶𝐶
𝑐𝑐=1𝑖𝑖∈𝑉𝑉𝐿𝐿                           (16) 

where 𝑦𝑦𝑖𝑖,𝑐𝑐 equals 1 if the label is 𝑐𝑐, and 0 otherwise, for node 𝑖𝑖. The number of classes is 𝐶𝐶 and the 
set of nodes having labels is 𝑉𝑉𝐿𝐿. 𝑦𝑦�𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚�𝑓𝑓𝑓𝑓(𝑧𝑧𝑖𝑖)� ∈ 𝑅𝑅𝐶𝐶  where 𝑓𝑓𝑓𝑓(⋅) is a MLP and the number 
of layers is one. 

3. Experiments 

3.1. Experimental Setups 

3.1.1. Datasets 

To understand the effectiveness of our proposed DFA-GNN, we evaluate it on 4 datasets. We use the 
Yelp review dataset, Amazon review dataset[6], T-Finance and T-Social[7] to study GNN-based fraud 
detection problem. The statistical information of the dataset is shown in Table 1. On all datasets, we use 
AUC and F1-macro to evaluate the overall performance of all classifiers. 

Because Yelp and Amazon datasets have three ready-made relation graphs respectively, DFA-GNN 
does not use relation learning module. Instead, it can directly use frequency adjusting module and dataset 
debiasing module for the three relation graphs. Our model and baselines are run on multi-relation graphs. 
In this process, they deal with information from different relations in their way. 
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Table 1: Dataset statistics. 

 Statistics 
Dataset # Nodes # Edges # Features # Anomaly # Train 
Amazon 11,944 4,398,392 25 6.87% 5% 
Yelp 45,954 3,846,979 32 14.53% 5% 
T-Finance 39,357 21,222,543 10 4.58% 5% 
T-Social 5,781,065 73,105,508 10 3.01% 5% 

3.1.2. Baselines 

We compare DFA-GNN with Player2Vec[10], GraphConsis[4], CARE-GNN[6], FRAUDRE[15] and 
BWGNN[7], which are five state-of-the-art GNN-based fraud detectors, to verify the ability of DFA-GNN 
in identifying camouflaged fraudsters. In particular, our comparison also include three classical methods, 
GCN[16], GAT[17] and GraphSAGE[11]. 

3.1.3. Experimental Setting 

The following hyperparameters are applied across all datasets: weight decay 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 5e –  4 and 
Adam optimizer with learning rate 𝑙𝑙𝑙𝑙 = 0.01. In addition, since the percentage of fraudsters is small in 
datasets, for training DFA-GNN and other baselines, we adopt under-sampling and mini-batch training. 
Through an open-source toolbox for fraud detection, we implemented Player2Vec, GraphConsis, CARE-
GNN, FRAUDRE and BWGNN. For our approach and other baselines, we conduct experiments based on 
the DGL library and PyTorch 1.6.0. 

3.2. Evaluation and Ablation Study 

We evaluated the ability of DFA-GNN to detect outliers using four real-world datasets. In Table 2, we 
can see the comprehensive performance indicators of the model. The bold values in bold indicate that the 
evaluation metric of the model is better than other benchmark models.  

Table 2: Experimental results of all compared models with 5% training ratios. 

Dataset Yelp Amazon T-Finance T-Social 
Metric AUC F1-

macro 
AUC F1-

macro 
AUC F1-

macro 
AUC F1-

macro 
GCN 55.37 53.28 75.13 63.02 59.23 58.33 63.87 52.74 
GAT 56.25 53.54 75.08 62.87 60.03 53.97 63.03 52.51 
GraphSAGE 56.16 53.49 73.72 62.58 66.39 55.64 65.24 55.24 
Player2Vec 53.87 52.47 80.54 69.26 81.27 67.08 66.04 55.28 
GraphConsis 65.72 56.61 83.62 72.48 89.64 71.82 68.71 55.43 
CARE-GNN 75.65 62.53 89.67 78.68 90.28 73.55 72.36 58.35 
FRAUDRE 76.42 62.08 90.84 80.87 90.55 75.86 71.05 56.22 
BWGNN 80.47 65.36 91.35 82.70 90.81 77.36 75.63 61.28 
DFA-GNN 80.55 63.50 91.52 83.08 91.03 77.61 73.85 60.57 
w/o 
debiasing 79.83 62.73 90.67 80.73 90.57 75.71 72.80 59.73 

Our model has achieved excellent results on most datasets. Among them, DFA-GNN performs 
excellently on Amazon and T-Finance datasets, with higher AUC and F1-macro values than all other 
models. It is evident that the inclusion of relation learning and counterfactual inference mechanisms 
significantly enhances model performance, which verifies our previous theoretical analysis.  

3.3. Hyper-parameter Sensitivity 

We conducted a comparative analysis between the performance of DFA-GNN and GCN across various 
iteration steps 𝑆𝑆. As shown in Figure 2, GCN exhibits optimal performance at a depth of two layers, with 
its effectiveness diminishing sharply with additional layers. This trend underscores the susceptibility of 
GCN to the over-smoothing dilemma. In contrast, DFA-GNN demonstrates consistent and superior 
performance across graphs of varying heterophily ratios, evidencing its robustness and superior ability to 
counteract over-smoothing. 
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Figure 2: Sensitivity of DFA-GNN and GCN to iteration step S (evaluation protocol is AUC). 

As shown in Figure 3, we conducted hyperparameter sensitivity analysis experiments using the T-
Finance and T-Social datasets to estimate the influence of 𝐾𝐾 on model expression. The results suggest 
that as 𝐾𝐾 increases, the performance of DFA-GNN also enhances; However, excessively high 𝐾𝐾 values 
can lead to meaningless redundant calculations in downstream tasks, which in turn can weaken 
performance.  

 
Figure 3: Sensitivity of DFA-GNN to relation numbers K (evaluation protocol is AUC). 

4. Conclusions 

In this article, our proposed DFA-GNN can handle the problem of graph heterogeneity in an end-to-
end manner in fraud detection datasets. Our proposed DFA-GNN applied the idea of counterfactual 
reasoning to the testing phase, eliminating two types of bias in the dataset and improving the model's 
ability to identify disguised fraudsters. Although some progress has been made, in future work, there are 
still some limitations and challenging issues that need to be addressed: If the dataset provides little 
information, what methods can we use to improve the model's ability to estimate the number of relation 
K? Thereby further improving the detection ability of the model. 
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