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Abstract: In order to study the changes of China's fund market, this paper carries out time series 
modeling and fitting prediction on the series based on the monthly series data of Shanghai Securities 
Fund Index from January 2010 to December 2019. EGARCH (1,1) model has a good fitting effect on 
Shanghai Securities Fund Index series, all parameters are not 0, and the residual series of the model is 
tested to obey the standard normal distribution. Finally, the fitted model is used to predict the Shanghai 
Securities Fund Index from January to May 2020, and compare it with the real value to test the accuracy 
of the model. The results show that the actual values are within the prediction interval of 95% confidence 
coefficient, and the fitting effect of the model is superior. 
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1. Introduction 

In recent years, the purchase of funds has gradually become the main way for Chinese people to invest 
and manage money matters. A securities investment fund refers to an investment tool that forms an 
independent fund property by raising funds through the sale of fund shares, which is managed by the 
fund manager and held in trust by the fund trustee. Securities investment is made in the form of asset 
portfolio, and fund share holders earn profits and bear risks according to their shares [1]. The huge returns 
of funds have brought huge development space for the fund industry. However, high returns are inevitably 
accompanied by high risks, such as its strong liquidity, unknown subscription and redemption prices, the 
management level of the parties involved in fund operation and other factors will bring risks to investors 

[2]. In order to reduce investment risk, it is necessary to make an empirical analysis of the volatility of the 
fund market to judge the trend of the fund market. 

The fund index can effectively reflect the changes in the fund market. In order to study the volatility 
characteristics of China's securities investment funds, this paper adopts 125 monthly data of Shanghai 
Securities Fund Index (closing) from January 2010 to May 2020. The time series model is used to fit and 
predict the fund index series (Shanghai Securities Fund Index is for the closed-end fund index in the 
Shanghai and Shenzhen stock exchanges). 

2. Time series model of Shanghai Securities fund index data 

2.1. Description of data and symbols of model 

In this paper, we use the data of 125 monthly index of Shanghai stock fund (data from EPS data 
platform https://www.epsnet.com.cn/), between January 2010 and May 2020, to analysis. This paper does 
not consider the data after May 2020, because the occurrence of COVID-19 in 2020 has a great impact 
on the stock and financial market, and the uncertainty of data is too strong and the volatility is violent, 
which will affect the fitting effect of the model. In order to test the correctness of the model, this paper 
uses the data from January 2010 to December 2019 for modeling, and uses the data from January 2020 
to may 2020 to test the fitting effect of the model. 

Let the Shanghai securities fund index sequence from January 2010 to December 2019 be xt (t=1,2... 
200), and the first-order lag sequence of this sequence be lagXt (t=1,2... 199). 

https://www.epsnet.com.cn/
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2.2. Observe the trend and periodicity of sequence xt 

First, SAS software is used to draw the sequence diagram of Shanghai Securities fund index sequence, 
as shown in Figure 1. 

 

Figure 1: Sequence diagram of the sequence tx  

It can be clearly seen that the sequence is non-stationary and has a certain increasing trend, but there 
is no periodicity. According to the SAS calculation results, it is concluded that the sequence xt is not a 
stationary sequence[3]. Combined with the characteristics of increasing trend of sequence xt, this paper 
adopts the residual auto regressive model. The first-order lag sequence lagXt of the sequence is used to 
regress the sequence xt to explain the deterministic trend of the sequence xt, and then the residual series 
is further processed. According to the results of sequence analysis, both time series xt and lagXt are non-
stationary sequences. If you want to do regression, you should first carry out EG test to test the 
cointegration relationship between the two time series. If regression is required, EG test should be 
performed first to test the co-integration relationship between the two time series. 

2.3. lagXt and xt were tested for EG cointegration relationship 

First, check the single integer order of the two sequences. If they are single integer sequences of the 
same order, the cointegration regression model of sequence xt with respect to lagXt can be further 
established. Then test the stationarity of residual sequence in the co-integration regression model. SAS 
program is used to perform EG test operation. 

(1) Make a first-order difference between xt and lagXt, and study the stationarity of the first-order 
difference sequence xt and lagXt,. The results of ADF unit root test are shown in Table 1. 

Table 1: ADF unit root test of first-order difference sequence xt 

Type Lags Rho Pr<Rho Tau Pr<Tau F Pr>F 

Zero Mean 
0 -91.3232 <.0001 -8.55 <.0001 - - 
1 -113.949 0.0001 -7.46 <.0001 - - 
2 -133.779 0.0001 -6.42 <.0001 - - 

Single Mean 
0 -91.7352 0.0001 -8.54 <.0001 36.51 0.0010 
1 -115.131 0.0001 -7.47 <.0001 27.88 0.0010 
2 -137.332 0.0001 -6.46 <.0001 20.86 0.0010 

Trend 
0 -91.9803 0.0004 -8.54 <.0001 36.47 0.0010 
1 -115.056 0.0001 -7.48 <.0001 28.01 0.0010 
2 -139.057 0.0001 -6.45 <.0001 20.83 0.0010 

It can be judged from Table 1 that xt and lagXt are first-order single integer sequences, and they can 
be tested for EG cointegration relationship in the next step. 

(2) Establish the cointegration regression equation of xt on lagXt, observe the stationarity of the 
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cointegration regression residual sequence, and use SAS program to get the following results(Table 2-5): 

Table 2: Cointegration regression results of xt on lagXt 

Source DF Sum of Squares Mean Square F Value Pr>F 
Model 1 3110494985 3110491985 59600.5 <0001 
Error 118 6158304 52189 -  

Uncorrected Total 119 3116650288 - - - 

Table 3: Variance analysis of cointegration regression 

Roost MSE Dependent Mean Coeff Var R-Square Adj R-Sq 
228.491 5018.00815 4.5559 0.9980 0.9980 

Table 4: Parameter estimates of cointegration regression 

Variable DF Parameter Standard Error t Value Pr>|t| 
lagXt 1 1.00247 0.00411 244.13 <.0001 

Table 5: Unit root test of cointegration regression residuals 

Type Lags Rho Pr<Rho Tau Pr<Tau F Pr>F 

Zero Mean 
0 -91.7661 <.0001 -8.58 <.0001 - - 
1 -115.246 0.0001 -7.50 <.0001 - - 
2 -137.507 0.0001 -6.49 <.0001 - - 

Single Mean 
0 -91.7797 0.0001 -8.55 <.0001 36.55 0.0010 
1 -115.280 0.0001 -7.47 <.0001 27.92 0.0010 
2 -137.667 0.0001 -6.46 <.0001 20.90 0.0010 

Trend 
0 -91.9468 0.0004 -8.53 <.0001 36.45 0.0010 
1 -115.940 0.0001 -7.47 <.0001 27.97 0.0010 
2 -138.836 0.0001 -6.45 <.0001 20.81 0.0010 

There is a significant linear correlation between xt and lagXt (Table 2), it can be seen that the residual 
order can be regarded as a stationary sequence (Table 5). According to the EG test, there is a co-
integration relationship between xt and lagXt, so it is reasonable to use lagXt sequence to perform 
regression on xt, and lagXt sequence can be used to explain the deterministic trend of xt in the residual 
autoregressive model. 

2.4. Conditional heteroscedasticity model 

After verifying the co-integration relationship between sequence xt and sequence lagXt, sequence 
lagXt can be used to fit the deterministic part of xt sequence in residual autoregressive model, and the 
heteroscedasticity and autocorrelation of residual sequence can be tested. 

The SAS software is used to fit the model and test the heteroscedasticity and autocorrelation. The 
results are as follows (Table 6,7,8): 

Table 6: Parameter estimation of deterministic part in residual autoregressive model 

Variable DF Estimate Standard Error t Value Approx Pr>|t| Variable Label 
Intercept 1 110.6346 107.0001 1.03 0.3033  

lagx 1 0.9821 0.0210 46.77 <.0001 lagx 

Table 7: Autocorrelation estimation of residual sequence 

Lag Covariance Correlation 
0 51281.9 1.000000 
1 11707.6 0.228300 
2 -2471.0 -0.048185 
3 -4585.4 -0.089416 
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Table 8: Conditional heteroscedasticity test of residual sequence 

Order Q Pr>Q LM Pr> LM 
1 5.9006 0.0151 5.5967 0.0180 
2 5.9006 0.0523 5.8427 0.0539 
3 22.9484 <.0001 23.2702 <.0001 
4 49.0603 <.0001 34.2702 <.0001 
5 49.2178 <.0001 34.8654 <.0001 
6 50.7301 <.0001 35.0624 <.0001 
7 54.9177 <.0001 36.9358 <.0001 
8 54.9507 <.0001 39.5395 <.0001 
9 55.0126 <.0001 39.6579 <.0001 

10 55.0931 <.0001 41.5663 <.0001 
11 56.0184 <.0001 41.8875 <.0001 
12 57.1491 <.0001 41.8882 <.0001 

According to the parameter estimation of the deterministic part of the residual autoregressive model 
(Table 6), it can be seen that lagXt coefficient is significantly not 0, sequence lagXt has a strong 
explanatory ability for the deterministic part of xt, and there is a significant linear correlation between 
the two sequences, and the influence of lagXt on xt is positively correlated. 

The residual sequence has obvious conditional heteroscedasticity (Table 7,8), so it is necessary to 
further explain the autocorrelation and conditional heteroscedasticity of the residual sequence, fully 
extract relevant information. Use AR-GARCH and other conditional heteroscedasticity models to fit and 
explain the residual sequence. 

3. EGARCH model is used to fit residual sequence and its fitting effect 

After several attempts, it is found that when the residual sequence is fitted by AR-GARCH model, 
the AR term in the final fitting result is not significantly 0, so it is considered that there is no 
autocorrelation in the residual sequence[4].Therefore, after removing the autoregression term (AR term) 
of residual, the conditional heteroscedasticity model was fitted again[5].Through experiments, it is found 
that among many models (ARCH model, EGARCH model etc.), EGARCH(1,1) model has the best 
fitting effect. 

Table 9: Statistical indicators of EGARCH (1,1) model 

Exponential GARCH Estimates 
SSE 6114670.2 Observations 119 
MSE 51384 Uncond Var - 

Log Likelihood -797.12717 Total R-Square 0.9491 
SBC 1622.92909 AIC 1606.25434 
MAE 158.761967 AICC 1607.00434 

MAPE 3.28327552 HQC 1613.02543 
Normality Test 3.0714 Pr>ChiSq 0.2212 

Table 10: Statistical indicators of EGARCH(1,1) model 

Variable DF Estimate Standard Error T Value Approx Pr>|t| Variable Label 
Intercept 1 94.8942 80.9775 1.17 0.2413  

lagx 1 0.9523 0.0160 61.26 <.0001 lagx 
EARCH0 1 14.6044 1.5241 9.58 <.0001  
EARCH1 1 0.8233 0.2542 3.23 0.0012  
EARCH2 1 -0.3793 0.1420 -2.67 0.0075  
THETA 1 0.3193 0.1581 2.02 0.0034  
Table 9 shows that the R square of the model is 0.95, and the model is valid. 

Table 10 shows that at the significance level of 0.05, EGARCH model parameters are not 0. Each 
variable of EGARCH model is effective. 

According to the normal distribution test in Table 7, the residual sequence of EGARCH model does 
not negate the null hypothesis of standard normal distribution, that is, the new residual sequence obtained 
after fitting the EGARCH model is considered to obey the standard normal distribution. 
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It can be seen from the coefficients and tests in Table 7 and 8 that EGARCH (1,1) model has a good 
fitting effect on sequence xt, and can well explain the trend change of sequence xt and the 
heteroscedasticity of residuals. 

To sum up, the EGARCH regression model fitted is: 
𝑥𝑥𝑡𝑡 = 94.8942 + 0.9823𝑥𝑥𝑡𝑡−1 + 𝑢𝑢𝑡𝑡
𝑢𝑢𝑡𝑡 = �ℎ𝑡𝑡𝑒𝑒𝑡𝑡 ,   𝑒𝑒𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁(0,1)

ln (ℎ𝑡𝑡) = 14.6044 − 0.3793ln (ℎ𝑡𝑡−1) + 0.8223g(𝑒𝑒𝑡𝑡−1)
g(𝑒𝑒𝑡𝑡) = 0.3193𝑒𝑒𝑡𝑡 + [|𝑒𝑒𝑡𝑡| − 𝐸𝐸|𝑒𝑒𝑡𝑡|]

                (1) 

4. Test the prediction effect of the model 

The EGARCH (1,1) model is used to evaluate and predict the Shanghai Securities Fund index data 
from January 2010 to May 2020. The fitting effect diagram is shown in Figure 2, where the two blue 
lines are the upper and lower limits of the 95% confidence interval, and the red line is the point estimation 
of the Shanghai Securities Fund index in each month. The black dot is the true value of the Shanghai 
Stock Fund index each month. 

 
Figure 2: Fitting effect diagram of EGARCH (1,1) model for Shanghai Securities fund index from 

January 2010 to May 2020 

According to the fitting effect diagram of the model, it can be seen that the real values of the Shanghai 
Securities fund index all fall within the estimated 95% confidence interval, and the red line formed by 
the point estimation is relatively consistent with the real value, so the fitting effect of the model fits well. 
Since the data from January to May 2020 were used as test data and did not participate in the model 
fitting, the prediction of the Shanghai Securities fund index from January to May 2020 by the model was 
more effective in judging the model effect. The comparison between the predicted value and the real 
value from January to May 2020 is shown in Table 11. 

Table 11: Comparison between real value and predicted value of Shanghai Securities Fund Index from 
January to May in 2020 

 The actual 
value 

Predictive 
value 

The lower end of the 95% 
forecast range 

The top end of the 95% 
forecast range 

2020.1 6376.69 6406.46 5575.09 7237.84 
2020.2 6341.1 6358.98 6052.85 6665.11 
2020.3 5985.96 6324.02 5879.54 6768.49 
2020.4 6268.63 5975.15 5591.74 6358.55 
2020.5 6196.77 6252.82 5846.55 6659.09 

It can be seen from the Table 9 that the predicted value of the Shanghai Securities Fund Index Model 
from January to May 2020 is close to the actual value, and the actual value is within the 95% confidence 
interval. Therefore, it can also be judged that the EGARCH (1,1) model has a good fitting effect and a 
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strong explanatory ability for Shanghai Securities fund index series xt. 

5. Conclusion 

The Shanghai securities fund index series referred in this paper can be explained by the autoregressive 
model and the EGARCH (1,1) model. It can be concluded from the model that the Shanghai securities 
fund index series has the following characteristics: 

(1) The fund index is positive autocorrelation. The bigger of the figure last month, the bigger of the 
fund index will be this month. 

(2) The fund index is heteroscedasticity. Under the impact of external factors on the fund index, its 
volatility will increase. But over time, its volatility diminishes. 

(3) The value of the fund index has an asymmetric effect on its fluctuation intensity. A rise in the 
index has a greater impact on its range than a fall. 

References 

[1] Lu Haixia. Based on intervention analysis model for the forecast of Shanghai securities fund index 
[J]. Value engineering, 2019, 38(24): 11-13. DOI: 10.14018/j.carol carroll nki cn13-1085/n.2019.24.005. 
[2] Jiang Tao, Wu Junfang. Application of ARIMA Model in fund Index Forecasting [J]. Statistical 
Education, 2007(07): 12-13. 
[3] Li Chuner. AHCH class model of fund income volatility empirical study [J]. Journal of modern 
business, 2019 (17): 80-82. The DOI: 10.14097/j.carol carroll nki. 5392/2019.17.036. 
[4] Wang Yan. Applied Time Series Analysis [M]. China Renmin University Press, 2005. 167-171, 170-
172. 
[5] Pealat Clement, Bouleux Guillaume, Cheutet Vincent. Improved Time series clustering based on new 
Geometric Frameworks [J]. Journal of Pattern Recognition, 2022 124. 


	2.1. Description of data and symbols of model
	2.2. Observe the trend and periodicity of sequence xt
	2.3. lagXt and xt were tested for EG cointegration relationship
	2.4. Conditional heteroscedasticity model

