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ABSTRACT. The theory of modal parameter identification based on self-cross 
spectrum density method was introduced. Taking an arch bridge as the research 
background, the modal test of the bridge was carried out by using the locomotive 
measure point method under ambient excitation. The modal frequencies, shapes and 
damping ratios of  the first six orders of the bridge were identified by self-cross 
spectrum density method. At the same time, the software of ANSYS was used to 
establish the finite element model of the bridge, and the corresponding frequencies 
and mode shapes were obtained by analysis. The comparison of measured and 
analyzed modal parameters shows that the results of the two methods are very close. 
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1. Introduction 

The modal parameters of bridges mainly include the natural frequencies, modes 
and damping. They are important dynamic response information of bridge structures. 
The measured modal parameters can be used for bridge damage identification and 
finite element model updating. The modal parameters analysis of the structure is 
also the premise of other dynamic analysis. Therefore, it is very important to obtain 
accurate modal parameters of bridge structure [1]. 

Modal parameters can be obtained by modal test. Traditional modal test is to 
identify modal parameters by measuring the excitation and structural response under 
artificial excitations. But it is difficult and expensive to impose artificial incentives 
in practical application, especially in some large structures. In addition, due to the 
influence of environment on the structure, the artificial excitation is not the same as 
the actual excitation on the structure, which affects the accuracy of modal parameter 
identification. Another is that the traditional methods need to interrupt traffic, 
causing great social influences and economic losses. The modal test based on 
ambient excitation can identify modal parameters by using the response of 
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environment and driving to bridge excitation. It needs neither artificial excitations 
nor traffic interruptions, so it is more economical. And the modal parameters 
obtained by this method are in the actual operational state of the bridge, which can 
better reflect the actual situation of the structure and solve the difficulties that 
traditional methods can not overcome. Modal tests under ambient excitation have 
been widely used in engineering [2-3], which has important practical significance. 

In this paper, the modal test of an arch bridge was carried out by using the 
locomotive measure point method under ambient excitation, and the modal 
parameters are identified by using the self-cross spectrum density method. The 
measured results are compared with the results of the finite element model analysis.  

2. Principle of Modal Test and Analysis 

2.1 The locomotive measure point method 

Move the measuring ordering can measure only two points at a time. Firstly, a 
reference point is determined at the position where the bridge amplitude is larger, 
and a sensor is arranged at the reference point to pick up the response. This 
reference point is fixed, and then another sensor is used to measure the response at 
the test point in turn [4]. This measurement method needs less equipment, simple 
layout and low cost, and it can continue to increase the number of measuring points 
for supplementary testing when the test results are not ideal. 

Modal parameter identification based on ambient excitation usually assumes that 
ambient excitation is white noise. On this premise, the principle of moving point 
method is introduced. 

Resonance method is used in the traditional modal test method based on ambient 
excitation to identify parameters. The mathematical model is as follows [5]: 

𝐻𝐻𝑙𝑙𝑙𝑙(𝜔𝜔) = 𝜔𝜔∑ 𝐷𝐷𝑙𝑙𝑙𝑙

1−�𝜔𝜔𝜔𝜔𝑖𝑖
�
2
+2𝑗𝑗𝜉𝜉𝑖𝑖

𝜔𝜔
𝜔𝜔𝑖𝑖

𝑁𝑁
𝑖𝑖=1                                              (1) 

In formula (1), 𝜔𝜔  is the excitation circle frequency; 𝐻𝐻𝑙𝑙𝑙𝑙(𝜔𝜔)  is the frequency 
response function of the 𝑙𝑙-point output to the 𝑝𝑝-point input;   𝑖𝑖 is the modal order, 𝑖𝑖 =
1,2,3,⋯ ,𝑁𝑁 ;  𝜉𝜉𝑖𝑖 is the damping ratio of the i-th order mode; When 𝜔𝜔 = 𝜔𝜔𝑟𝑟, Formula (1) 
can be written as: 

�𝐻𝐻𝑙𝑙𝑙𝑙(𝜔𝜔𝑟𝑟)� = (𝐷𝐷𝑙𝑙𝑙𝑙)𝑟𝑟
2𝜉𝜉𝑟𝑟

= ΦlrΦpr

2𝜉𝜉𝑟𝑟𝑘𝑘𝑟𝑟
                                          (2) 

In formula (2), Φ𝑙𝑙𝑙𝑙 is the 𝑙𝑙-point mode component of the 𝑟𝑟-th mode; 𝑘𝑘𝑟𝑟 is the first 
order modal stiffness;  𝐷𝐷𝑙𝑙𝑙𝑙 = ΦlrΦpr

𝑘𝑘𝑟𝑟
 ; Vector form of  Formula (1) is as follows: 
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                                              (3) 

Assuming that the ambient excitation is white noise, formula (3) can be 
expressed as: 
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                                             (4) 

Formula (4) shows that the mode shapes of the system are determined by the 
amplitude of the output response spectrum. If a measuring point is taken as a 
reference point, the following formula can be obtained. 
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                                                (5) 

According to Formula (5), it is feasible to carry out modal tests by using 
locomotive measure point method. 

2.2 Modal parameter identification method based on self-cross spectrum density 
method 

Self-cross spectrum density method is a simple and fast method to identify 
modal parameters in frequency domain based on environmental vibration. It is based 
on the fact that the natural frequencies of structures will peak in their frequency 
response functions, and the peak is a good estimation of the characteristic 
frequencies. As the excitation force under ambient excitation is unknown, the 
frequency response function loses its significance. Instead, in this case, the self- 
cross power spectrum between the ambient excitation response and the reference 
point response could be used [6]. So, the natural frequency would be determined 
only by the peak value on the average regularized power spectral density curve. 
When the input signal and the measured structure satisfy the idealized assumption 
(Input signals should be stationary random), the modal parameters of the system 
could be identified by using the self-power spectrum of the structure response point 
and the amplitude, phase, coherence function and transfer rate of cross-power 
spectrum of the reference point [7].  
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Assuming that the structure is a real modal system(small damped), the frequency 
response function can be obtained according to the relationship between excitation 
and response: 

ℎ𝑖𝑖𝑖𝑖(𝜔𝜔) = 𝑥𝑥𝑖𝑖
𝑓𝑓𝑘𝑘

= ∑ 𝜙𝜙𝑖𝑖𝑖𝑖𝜙𝜙𝑘𝑘𝑘𝑘

𝑘𝑘𝑟𝑟−𝜔𝜔2𝑚𝑚𝑟𝑟+𝑗𝑗𝑗𝑗𝑐𝑐𝑟𝑟
=𝑁𝑁

𝑟𝑟=1 ∑ 𝜙𝜙𝑖𝑖𝑖𝑖𝜙𝜙𝑘𝑘𝑘𝑘

(𝑗𝑗𝑗𝑗−𝜆𝜆𝑟𝑟)(𝑗𝑗𝑗𝑗−𝜆𝜆𝑟𝑟���)
𝑁𝑁
𝑟𝑟=1                       (6) 

In Formula (6), 𝑥𝑥𝑖𝑖 is the steady-state response of the system at 𝑖𝑖 point; 𝑓𝑓𝑘𝑘 is the 
excitation amplitude of 𝑘𝑘 point; 𝑁𝑁 is the modal order; 𝜙𝜙𝑖𝑖𝑖𝑖 is the mode vector at point 
𝑖𝑖 of the mode of the  r-th order; 𝜙𝜙𝑘𝑘𝑘𝑘 is the mode vector of the first order mode at 𝑘𝑘 
point; 𝜆𝜆𝑟𝑟 and 𝜆𝜆𝑟𝑟��� are a pair of conjugate eigenvalues of structures.  

Formula (6) shows that the frequency response function contains all modal 
information of the structure [8]. Under environmental excitation, the response is 
known and the excitation force is unknown. Assuming that the response of a 
reference point in the structure is an excitation, there is a linear correlation between 
the response of other measuring points and the response. The transfer function 
between the assumed reference point and other measurement points is established to 
identify the modal parameters. If the fixed reference point on the structure is 𝑝𝑝, the 
transfer rate is: 

  𝛼𝛼𝑖𝑖(𝜔𝜔) = 𝑥𝑥𝑖𝑖(𝜔𝜔)
𝑥𝑥𝑝𝑝(𝜔𝜔)                                                      (7) 

In formula (7), 𝑥𝑥𝑖𝑖(𝜔𝜔) is the displacement response of point 𝑖𝑖 on the structure. 
According to formula (6), it can be expressed as:  

𝑥𝑥𝑖𝑖(𝜔𝜔) = ∑ ℎ𝑖𝑖𝑖𝑖(𝜔𝜔)𝑓𝑓𝑘𝑘𝑚𝑚
𝑟𝑟=1 (𝜔𝜔)                                           (8) 

Assuming that the input signal under ambient excitation is white noise, the 
excitation signal is streightness spectrum. Therefore, its power spectral density 
function is approximately uniform distribution in all frequency arrange, and the 
excitation force at each point in the structure satisfies: 

𝑓𝑓𝑘𝑘(𝜔𝜔) = 𝑓𝑓(𝜔𝜔) = 𝐶𝐶1                                                (9) 

𝐶𝐶1 is a constant in formula 9. Bring Formula (9) into Formula (8): 

𝑥𝑥𝑖𝑖(𝜔𝜔) = 𝑓𝑓𝑘𝑘(𝜔𝜔)∑ ℎ𝑖𝑖𝑖𝑖(𝜔𝜔) =𝑚𝑚
𝑟𝑟=1 𝐶𝐶1 ∑ ℎ𝑖𝑖𝑖𝑖(𝜔𝜔) =𝑚𝑚

𝑟𝑟=1 𝐶𝐶1ℎ𝑖𝑖(𝜔𝜔)                    (10) 

In formula (10), ℎ𝑖𝑖(𝜔𝜔)is a lumped frequency response function. From formula 
(10), the response 𝑥𝑥𝑖𝑖(𝜔𝜔)  of the structure is equivalent to the lumped frequency 
response function ℎ𝑖𝑖(𝜔𝜔), so the natural frequency of the structure can be obtained 
directly from the response 𝑥𝑥𝑖𝑖(𝜔𝜔).  

Finally, it is assumed that the real modes of the structure could be effectively 
separated from each other, and there were no coupling or very small coupling 
between them. Therefore, the system response at the natural frequencies of order 𝑟𝑟 is 
dominated by the vibration of the mode of order 𝑟𝑟, and the contribution of other 
modes is neglected. Bringing Formula (10) into Formula (7): 

𝛼𝛼𝑖𝑖(𝜔𝜔) = 𝑥𝑥𝑖𝑖(𝜔𝜔)
𝑥𝑥𝑝𝑝(𝜔𝜔) = ∑ ℎ𝑖𝑖𝑖𝑖(𝜔𝜔)𝑚𝑚

𝑟𝑟=1
∑ ℎ𝑝𝑝𝑝𝑝(𝜔𝜔)𝑚𝑚
𝑟𝑟=1

=
𝜙𝜙𝑖𝑖𝑖𝑖

(𝑗𝑗𝑗𝑗−𝜆𝜆𝑟𝑟)(𝑗𝑗𝑗𝑗−𝜆𝜆𝑟𝑟����)
∑ 𝜙𝜙𝑘𝑘𝑘𝑘
𝑚𝑚
𝑟𝑟=1

𝜙𝜙𝑝𝑝𝑝𝑝
(𝑗𝑗𝑗𝑗−𝜆𝜆𝑟𝑟)(𝑗𝑗𝑗𝑗−𝜆𝜆𝑟𝑟����)

∑ 𝜙𝜙𝑘𝑘𝑘𝑘
𝑚𝑚
𝑟𝑟=1

= 𝜙𝜙𝑖𝑖𝑖𝑖

𝜙𝜙𝑝𝑝𝑝𝑝
                   (11) 
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In formula: 𝑝𝑝  is a fixed reference point. So 𝜙𝜙𝑝𝑝𝑝𝑝  is a fixed value at a certain 
natural frequency 𝜔𝜔r, and formula (11) can be simplified to: 

𝛼𝛼𝑖𝑖(𝜔𝜔) = 𝜙𝜙𝑖𝑖𝑖𝑖

𝜙𝜙𝑝𝑝𝑝𝑝
= 𝐶𝐶2𝜙𝜙𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑖𝑖𝑖𝑖                                         (12) 

In formula(12), 𝐶𝐶2 is constant. According to formula (12), the working mode at 
natural frequency 𝜔𝜔𝑟𝑟 can be obtained from the transfer rate curve 𝛼𝛼𝑖𝑖(𝜔𝜔), and can be 
approximated as the r-order mode of the structure. The magnitude of the mode 
shapes depends on the value of the transmittance at the natural frequency, and the 
direction of the mode shape is determined by the phase of the cross power spectrum 
at that frequency or the sign of the real part of the transmittance. 

The self-power spectrum 𝑝𝑝𝑖𝑖(𝜔𝜔) of point 𝑖𝑖 and the cross-power spectrum 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) of 
the responses of point 𝑖𝑖  and point 𝑝𝑝  are known respectively by classical power 
spectrum estimation method:  

𝑝𝑝𝑖𝑖(𝜔𝜔) = 1
𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹

𝑥𝑥𝑖𝑖(𝜔𝜔)▪conj�𝑥𝑥𝑖𝑖(𝜔𝜔)� = 1
𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹

|𝑥𝑥𝑖𝑖(𝜔𝜔)|2 = 𝐶𝐶12

𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹
|ℎ𝑖𝑖(𝜔𝜔)|2              (13) 

𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) = 1
𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹

𝑥𝑥𝑖𝑖(𝜔𝜔)▪conj �𝑥𝑥𝑝𝑝(𝜔𝜔)�                                  (14) 

Formula (13) shows that there is a square relationship between the self-power 
spectrum 𝑝𝑝𝑖𝑖(𝜔𝜔) and |ℎ𝑖𝑖(𝜔𝜔)|, so they have the same extremums, so the amplitude of 
the transfer function can be replaced by the self-power spectrum of the response 
point. Bring Formula (6) into Formula (10): 

𝑥𝑥𝑖𝑖(𝜔𝜔) = 𝑓𝑓𝑘𝑘(𝜔𝜔)∑ ℎ𝑖𝑖𝑖𝑖(𝜔𝜔) = 𝐶𝐶1
𝜙𝜙𝑖𝑖𝑖𝑖

(𝑗𝑗𝑗𝑗−𝜆𝜆𝑟𝑟)(𝑗𝑗𝑗𝑗−𝜆𝜆𝑟𝑟���)
= ∑ 𝜙𝜙𝑘𝑘𝑘𝑘𝑚𝑚

𝑟𝑟=1
𝑚𝑚
𝑟𝑟=1                  (15) 

From equation (15), we can see that the extreme value of lumped transfer 
function is independent of the position of the extremum. 

At the same time, comparing between Formulas (13) and (14), they have similar 
forms,  and 𝑝𝑝𝑖𝑖(𝜔𝜔) and 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) have the same extremums, so the amplitude map of 
lumped transfer function can be replaced by the cross power spectrum between the 
reference point and the response point to identify the natural frequency. 

Damping ratio is calculated by half power bandwidth method:  

𝜉𝜉1 = 𝜔𝜔1−𝜔𝜔2

2𝜔𝜔𝑖𝑖
                                                     (16) 

In formula (16), 𝜔𝜔1and 𝜔𝜔2 are the intersection frequencies of 1/√2  amplitude 
levels with peak values and curves (𝜔𝜔2 > 𝜔𝜔1); 𝜔𝜔𝑖𝑖 is the 𝑖𝑖-th order peak frequencie. 

So, when the measured structure satisfies the assumptions of real modal system-
streightness spectral input signal and small damped structure with non-close mode, 
the self-power spectrum of the response point and the cross-power spectrum 
between the fixed reference point and the response point can replace the amplitude 
of the frequency response function, and then the natural frequency and damping 
ratio of the structure can be identified according to their peak value.  
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3. Modal test of an arch bridge 

This test was implemented on an arch bridge in Dalian. The main span of the 
bridge is a through tied arch with a single supporting plane. Its total length is 
272.13m and its width is 35m. The longitudinal stiffening beam of main span is a 
single-box five-chamber two-way prestressed concrete box structure with solid 
section beams at the ends. The arch rib is a steel box girder, and the connecting 
sections between the arch rib and the main girder are steel-concrete composite 
segments with the length of 6.32m. The middle section of is a steel box structure. 
Thespan of the arch is 250m, and the height is 55.5m, and the ratio of arch rib to 
span is 1/4.5.There are 33 pairs of suspenders in the whole bridge, The distance 
between which in longitudinal is 7m and in transverse is 3.8m. The picture and 
drawing of the arch bridge are as follows: 

  
 

(a) Scene picture (b) Elevation drawing 

Figure. 1 Picture and drawing of the Arch bridge 

3.1 The scheme of the modal test  

This test adopts a wireless bridge modal test and analysis system. Depending on 
the finite element model analysis, we focus on the frequency range of 0-4.0Hz. 
According to Nyquist sampling theorem [9], the sampling frequency must be more 
than twice the bandwidth of the sampled signal. Therefore, we set the frequency of 
the modal test to 20Hz, and the time of sampling is 15 minutes. Each channel 
collects 18,000 data. The arch rib is very high, so it is difficult to install sensors on 
the arch while the bridge on operation, or else specific construction facilities would 
be needed and traffic would be intterupted. Therefore only the beam are 
implemented with the velocity sensors. The layout of measuring points is shown in 
Fig. 2. In this modal test, the moving measuring point method is adopted, and the No. 
7 measuring point is chosen as the reference point, because the No. 7 measuring 
point is close to the middle span and has a large amplitude.  
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Figure. 2 Layout of measuring points (unit: cm) 

3.2 Modal analysis 

The velocity time histories of two measured points are shown in Fig. 3. The 
abscissa is time, the unit is s, the longitudinal axis is velocity amplitude, and the unit 
is mm/s. 

 
time (s) 

 
time (s) 

Figure. 3 Velocity time history curve of two measured points 

Firstly, the time-domain data are filtered in order to eliminate the noise in the 
signal, which will make the spectrum more smooth and identify the peak more 
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accurately. Generally, the filtering methods include windowing, averaging, 
overlapping and so on. In this experiment, the testing time is long enough, so it is 
not nessesary to use overlapping, and only the rectangular window is used to filter 
the waves. The velocity data are analyized by self-cross spectrum method, and the 
spectrum diagram is obtained as shown in Figure 4. Then first six natural 
frequencies and damping ratios of bridges are obtained according to the spectrum 
diagram, which are listed in Table 1. The first six modes shapes are shown in figs. 4 
to 9. 

 

Figure. 4 Velocity Spectrum 

3.3 Dynamic analysis of the finite element model  and resulsts comparision  with 
the modal test  

The finite element model of the arch bridge is established by the finite element 
analysis software ANSYS. According to the structure characteristics of each part of 
the arch bridge, BEAM188 element is used for arch ribs and longitudinal beams, and 
LINK10 element is used for suspender simulation. In addition, the MASS21 
elements are distributed on the arch ribs to attach the mass of the diaphragms here. 
There are 279 elements and 428 nodes in the finite element model of the whole 
bridge. The arch bridge constraints are considered as full constraints. In this paper, 
the subspace method is used to calculate the modes of the finite element model, and 
the first six order modes corresponding to the measured ones are extracted. 

The calculated and measured frequencies corresponding to the first three vertical 
modes and the first three torsional modes are listed in Table 1, Table 2, together 
with the errors between them. The errors are less than 5%. The calculated results are 
in good agreement with the measured results. It shows that although there are errors 
between the initial finite element model and the actual bridge structure, the errors 
are relatively small. The comparison of the finite element analysis mode and the 
measured mode is shown in fig. 5 to fig. 10. In the figures, (a) are the measured 
mode shapes of the bridge deck, as there were no sensors on the arch, so the 
measurement shapes includes no arch component; (b) are mode shapes of the finite 
element model of the whole arch bridge. 
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Table 1 Comparison of measurement and computational frequencies of the first 
three order vertical modes 

Number Mode order Measured 
frequency (Hz) 

Calculated 
Frequency (Hz) 

Error 
(%) 

Damping ratio 
(%) 

𝑓𝑓1 First -order vertical 
bending 0.635 0.66556 4.8125 0.003 

𝑓𝑓2 Second -order 
vertical bending 0.874 0.86913 -0.5572 0.015 

𝑓𝑓3 Third-order vertical 
bending 1.353 1.3996 3.4441 0.006 

Table 2 Comparisons of measured and calculated frequencies of the first three-
order torsion modes  

Number Mode order Measured 
frequency (Hz) 

Calculated 
Frequency (Hz) 

Error 
(%) 

Damping ratio 
(%) 

𝑓𝑓1 first-order 
torsion 1.001 1.0311 3.0069 0.007 

𝑓𝑓2 Second-order 
torsion 1.948 2.0246 3.9322 0.020 

𝑓𝑓3 Third-order 
torsion 2.91 3.02016 3.7869 0.022 

 

 

 

 
(a) By measurement (b) By FEM 

Figure. 5 The shapes of first order of vertical modes 

 

 

 
(a) By measurement (b) By FEM 

Figure. 6 The shapes of second order of vertical modes 
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(a) By measurement (b) By FEM 

Figure. 7 The shapes of third order of vertical modes  

 

 

 
(a) By measurement (b) By FEM 

Figure. 8 The shapes of first order of torsional mode 

 
 

(a) By measurement (b) By FEM 

Figure. 9 The shapes of second order of torsional mode 
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(a) By measurement (b) By FEM 

Figure. 10 The shapes of third order of torsional mode 

4. Conclusion 

Comparing the modal parameters of arch bridge test with the results of finite 
element model analysis, the results show that they are basically consistent, which 
means that the identification of bridge modal parameters based on self-cross 
spectrum density method is feasible. By the locomotive measure point method, the 
natural mode frequencies, damping ratios and shapes of structures can be identified 
accurately by only two sensors.  
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