
The Frontiers of Society, Science and Technology
ISSN 2616-7433 Vol. 6, Issue 4: 48-53, DOI: 10.25236/FSST.2024.060407

Published by Francis Academic Press, UK
-48-

Path Safety Inflation Planning Algorithm Based on
Improved JPS

Zirong Lin

Shanghai Starriver Bilingual School, Shanghai, 201108, China

Abstract: This paper addresses the safety hazards present in the JPS path planning algorithm during
actual operations, proposing an improved JPS planning algorithm based on path safety inflation.
Firstly, the paper processes the map's obstacles with boundary inflation to reduce the probability of
obstacle collision, thereby enhancing the feasibility and safety of the planned path. Secondly,
considering the physical properties of drones and the feasible space of the environment in reality, this
paper controls the degree of obstacle boundary inflation further by adjusting the inflation coefficient.
Lastly, the paper validates the proposed algorithm through simulation experiments, with the results
indicating a significant improvement in the feasibility of the drone reaching its destination amidst
obstacle inflation.

Keywords: Jump Point Search algorithm; Obstacle Inflation; Path Planning

1. Introduction

In recent years, with the optimization and iteration of pathfinding algorithms for automated robots,
the field of drone autonomous navigation has flourished, and autonomous path planning, as the
foundation of drone autonomous navigation, has been widely developed[1]. Dutch computer scientist
Edsger W. Dijkstra was the first to propose the graph-based Dijkstra algorithm[2], which finds the
shortest path from the starting point to all other nodes by continuously updating the distances between
nodes. However, it may face challenges of large search spaces and high computational complexity in
practical applications. To address this issue, Peter Hart, Nils Nilsson, and Bertram Raphael proposed
the heuristic pathfinding A* [3]algorithm based on the Dijkstra algorithm and greedy best-first search
algorithm. This algorithm uses actual costs and heuristic evaluations to find the optimal path, and while
guaranteeing the optimal solution, it reduces the search space and improves search efficiency through
heuristic methods. However, the A* algorithm faces the issue of node redundancy in practical
applications with large-scale maps, which decreases the efficiency of the algorithm. Based on this,
Daniel Harabor and Alban Grastien introduced the Jump Point Search (JPS) algorithm[4], which
optimizes path searching by eliminating unnecessary intermediate nodes and using jump points,
significantly increasing search speed.

However, although the JPS algorithm performs excellently in virtual simulations, it overlooks key
factors in practical applications, such as the size and speed of drones. This makes the algorithm capable
of achieving faster path planning speeds and higher accuracy, but the paths planned carry a higher risk.
To solve this problem, literature[5] combined the jump point concept of JPS with the A* algorithm,
optimizing the path search of the A* algorithm and increasing the path planning speed while retaining
the lower memory consumption of JPS. Meanwhile, by assessing the safety of jump points and
replanning paths, the average search speed, average path length, and average collision risk were all
improved[6].

Addressing the issues of safety and long search times of the JPS algorithm in global path planning
for mobile robots, literature[7]proposed a bidirectional jump point search algorithm, effectively
reducing search time and enhancing safety. Moreover, literature [8]introduced a path planning method
that balances smoothness and search efficiency and optimized the path to reduce the trajectory length
and the number of turns. Based on the jump point search algorithm, literature[9]applied its pruning
rules to multiple nodes, reducing iterative calculations when searching for jump points. By eliminating
intermediate turning points that only change direction through a "diagonal priority" approach, memory
consumption was lowered, and computational real-time performance was improved to meet the
requirements of rapid global path planning for mobile robots.

The Frontiers of Society, Science and Technology
ISSN 2616-7433 Vol. 6, Issue 4: 48-53, DOI: 10.25236/FSST.2024.060407

Published by Francis Academic Press, UK
-49-

Although the above methods improved the safety of the JPS algorithm by considering the
distribution of environmental obstacles, they did not consider the physical characteristics of drones
themselves. Based on this, this paper proposes an improved JPS planning algorithm based on path
safety inflation, optimizing the obstacle inflation algorithm to further enhance the safety and usability
of the path search algorithm in drone applications. Firstly, the paper processes the map's obstacles with
boundary inflation to reduce the probability of obstacle collision, thereby enhancing the feasibility and
safety of the planned path. Secondly, considering the physical properties of drones and the feasible
space of the environment in reality, this paper controls the degree of obstacle boundary inflation further
by adjusting the inflation coefficient. After employing the method proposed in this paper, the safety
and reliability of drone flights have been greatly ensured, positively impacting the improvements to the
JPS algorithm.

2. Jump Point Search Algorithm (JPS)

The Jump Point Search (JPS) algorithm is a heuristic search algorithm designed for efficient
pathfinding, particularly suited for grid map-based path planning challenges. It optimizes the A*
algorithm by incorporating preprocessing and jumping techniques, making the search process more
efficient. JPS is widely used in practical applications such as game development, robotic path planning,
and map navigation. The core idea of JPS is to reduce the search space through preprocessing and
jumping techniques, thereby improving search efficiency. In the traditional A* algorithm, each node
needs to be exhaustively expanded, leading to a large number of unnecessary node expansions. In
contrast, JPS algorithm makes jumps on the map, skipping some intermediate nodes and reducing
search complexity.

Specifically, during the expansion of each node, JPS performs jump operations, continuing in the
current direction until encountering a blockage or a jump point. Jump points are nodes where a forced
jump in the current direction occurs; they are key points that allow skipping unnecessary node
expansions. For example, when encountering a straight-line obstacle in horizontal, vertical, or diagonal
directions, it's possible to jump directly to the other side of the obstacle.

To find jump points, JPS uses a heuristic approach, utilizing the map's topology to determine which
nodes are jump points, thus reducing unnecessary node expansions. This heuristic method allows JPS
to significantly reduce search time while ensuring the search for the optimal path. The concepts of
forced neighbors and jump points are important components of the JPS algorithm, which are introduced
as follows:

-Forced Neighbor

A forced neighbor is defined during the pathfinding process as a neighbor node of a certain node X,
which is on the path from a parent node P, and the cost to reach these neighbor nodes via node X is less
than the cost directly from parent node P to these neighbors. This makes these neighbor nodes forced
neighbors.

Figure 1 Force Neighbor example diagram

As shown in Figure 1, the blue grid represents the forced neighbor n, the yellow grid represents the

The Frontiers of Society, Science and Technology
ISSN 2616-7433 Vol. 6, Issue 4: 48-53, DOI: 10.25236/FSST.2024.060407

Published by Francis Academic Press, UK
-50-

parent node P, and the black grid represents an obstacle. Around the child node X, there are eight
neighbor grids. If, starting from parent node P, the cost to reach one of the eight neighbor grids through
X is less than the cost of any path not passing through X to that specific node, that grid node is termed
as the forced neighbor n.

-Jump Points

Jump points can be categorized into four scenarios, defined as follows:

1) Start and End Points: The path's start and end points are defined as jump points. This means that
in the initial stage of path planning, the start and end points are key nodes in the search path and need
to be treated specially. The setting of the start and end points directly affects the quality and efficiency
of the final path found, as illustrated in scenarios 1 and 4 of Figure 2.

2) Presence of Forced Neighbors: A node is defined as a jump point when it has at least one forced
neighbor around it. The presence of forced neighbors indicates that the node is a necessary passage on
the path, which can be used to optimize the choice of path. In this case, the existence of jump points
allows the algorithm to find the optimal path more quickly, reducing unnecessary searches, as shown in
scenario 2 of Figure 2.

3) Diagonal Jump Points: When a node is being searched in a diagonal direction, if there is a jump
point in the horizontal or vertical direction of a diagonal node, that diagonal node is also defined as a
jump point. In this case, the presence of jump points helps the algorithm skip some unnecessary
intermediate nodes diagonally and move directly towards the target node, thereby accelerating the
search process, as illustrated in scenario 3 of Figure 2.

Figure 2. Jump point example diagram

-JPS Algorithm Process

The process of the Jump Point Search (JPS) algorithm can be defined in five steps, incorporating
the concepts of an Open list and a Close list. The Open list consists of all nodes that are starting to be
searched, while the Close list comprises all nodes that have finished being searched.

Step One: Select the node with the lowest cost in the Open list as the starting point S.

Step Two: Start the search from the starting point in horizontal, vertical, and diagonal directions. If
a jump point or boundary point is encountered, end the search in that direction and add the jump point
from that direction to the Open list.

Step Three: If no jump point is found, move one node diagonally forward and repeat Step Two.

Step Four: Once the search in all directions is concluded, the search for the current jump point is
complete. Remove that jump point from the Open list and add it to the Close list.

Step Five: The algorithm ends when the Open list is empty or the end point is reached.

For illustration, consider Figure 3: The starting point S is added to the Open list, and the search
begins as shown in part a. Jump points found during the search are added to the Open list, as illustrated
in part b. In part c, S is removed from the Open list and added to the Close list because its search is
completed, and the second jump point in the Open list starts being searched. Repeat Steps Two to Four
until the end point E is reached and moved from the Open list to the Close list, as shown in part h, at
which point the algorithm ends.

The Frontiers of Society, Science and Technology
ISSN 2616-7433 Vol. 6, Issue 4: 48-53, DOI: 10.25236/FSST.2024.060407

Published by Francis Academic Press, UK
-51-

Figure 3. Example diagram of JPS algorithm

3. Obstacle expansion algorithm

In this paper, the obstacle expansion algorithm is improved based on JPS algorithm. The obstacle
expansion algorithm is mainly divided into three steps. In the first step, the algorithm will determine
the position and size of obstacles. As shown in Figure 4, the algorithm locates three 1*1 size obstacles
at [0,2] [4,2] and [6,8] respectively. At the same time, the algorithm locates an irregularly shaped
obstacle located [2,7]. In the second step, the algorithm compares the boundary of the obstacle to the
boundary of the map to ensure that the swelling obstacle will not exceed the boundary. As shown in
Figure 4, the expansion of the obstacle located at [0,2] will exceed the boundary at the top, and the
algorithm will automatically eliminate this part of the expansion obstacle. Similarly, the obstacles
located at [6,8] will expand beyond the boundary on the right and below, so the algorithm only expands
the obstacles on the left and above. In the third step, the algorithm automatically calculates the impact
between obstacles and adjusts the coefficient of expansion to reserve a channel for the drone to pass
through. As shown in Figure 5, the obstacles at [2,5] in the figure are affected by the three obstacles at
[0,2] [4,2] [4,8]. The expansion of the obstacles with an expansion coefficient of 1 will make it
impossible for the UAV to pass. The algorithm automatically sets the expansion coefficient to 0.5 to
reserve a channel with a width of 1 in the expanded obstacle for the UAV to pass through.

Figure 4: The case when the expansion coefficient is 1

The Frontiers of Society, Science and Technology
ISSN 2616-7433 Vol. 6, Issue 4: 48-53, DOI: 10.25236/FSST.2024.060407

Published by Francis Academic Press, UK
-52-

Figure 5: The case when the expansion coefficient is 0.5

4. Simulation Experiment

To verify the effectiveness of the obstacle inflation algorithm, we conducted a simulation
experiment in PyCharm, with the results shown in Figures 6(a) and 6(b) as described below. As
indicated by the red box in Figure 6(a), it can be objectively observed that before applying the obstacle
inflation algorithm, it is very dangerous for the drone to cross grid obstacles diagonally, posing a high
risk of collision with obstacles. However, the experimental results after using the obstacle inflation
algorithm, as shown in the red box in Figure 6(b), effectively avoided collisions between the drone and
real obstacles, significantly improving flight safety.

Figure 6: (a) Experimental results without using the obstacle inflation algorithm (b) Experimental

results with the obstacle inflation algorithm

5. Conclusion

Addressing the potential safety risks associated with the JPS (Jump Point Search) path planning
algorithm in practical operations, this paper presents an improved JPS planning algorithm based on a
strategy of path safety inflation. Firstly, by inflating the boundaries of obstacles in the map, this paper
successfully reduces the probability of obstacle collision, thereby enhancing the feasibility and safety
of the planned path. Additionally, considering the physical properties of drones and the feasible space
of the environment, the paper further optimizes the algorithm by adjusting the inflation coefficient to
control the extent of obstacle boundary inflation, making the planned path closer to the actual
operational requirements. Finally, the paper verifies the proposed algorithm through simulation
experiments. The experimental results clearly demonstrate that the feasibility of the drone's path to the

The Frontiers of Society, Science and Technology
ISSN 2616-7433 Vol. 6, Issue 4: 48-53, DOI: 10.25236/FSST.2024.060407

Published by Francis Academic Press, UK
-53-

target endpoint is significantly improved under obstacle inflation. This conclusion underscores the
potential value of the improved JPS algorithm in practical applications, providing an effective solution
for the safety and reliability of drone path planning. Despite the significant achievements of the
proposed improvement in the experiments, there remain some challenges and room for expansion.
Future research could further explore the applicability of the algorithm in different environments and
deeper strategies for path planning optimization to meet the ever-changing and complex real-world
requirements. These efforts will help to better address the challenges of path planning in reality,
promoting safer and more efficient applications of drone technology across various fields.

References

[1] Zhou Huike. Research on Low-Altitude UAV Path Planning Algorithms [D]. Xi'an University of
Posts and Telecommunications, 2023.
[2] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik, vol. 1,
no. 1, pp. 269–271, Dec. 1959.
[3] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–
107, Jul. 1968.
[4] D. D. Harabor et al., "Online graph pruning for pathfinding on grid maps," in Proc. 25th AAAI
Conf. Artif. Intell., 2011.
[5] Yin Xiangzhao. Navigation Control of Mobile Robots Based on Improved A* Algorithm with Jump
Point Search [D]. Nanchang University, 2021. DOI:10.27232/d.cnki.gnchu.2020.002800.
[6] Huang Zhibang, Hu Likun, Zhang Yu, et al. Research on Safe Path Based on Improved Jump Point
Search Strategy [J]. Computer Engineering and Applications, 2021, 57(01): 56-61.
[7] Ma Xiaolu, Mei Hong. Research on Global Path Planning of Mobile Robots with Bidirectional
Jump Point Search Algorithm [J]. Mechanical Science and Technology, 2020, 39(10): 1624-1631.
DOI:10.13433/j.cnki.1003-8728.20190342.
[8] Huang Jianmeng, Wu Yuxiong, Lin Xiezhao. Smooth JPS Path Planning and Trajectory
Optimization Method for Mobile Robots [J]. Transactions of the Chinese Society for Agricultural
Machinery, 2021, 52(02): 21-29+121.
[9] Song Xiaoru, Ren Yiyue. Improved Jump Point Search Algorithm for Rapid Global Path Planning
of Mobile Robots [J]. Science Technology and Engineering, 2020, 20(29): 11992-11999.

