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Abstract: In order to achieve sustainable development of rural economy, effectively utilize limited arable 
land resources, and develop according to local conditions. The organic farming industry is of great 
significance. This article is based on the existing planting experience in a certain rural area, and 
establishes a mathematical model analysis to improve the production efficiency of agricultural products 
and reduce the negative impact of uncertain factors on planting. Establish Single-Objective 
Programming model, Spearman correlation analysis, Multi-objective Optimization Problem, Nonlinear 
Programming model. There is a significant correlation between yield per acre and crop type, plot type, 
and planting season, and considering the expected sales volume, yield per mu, planting cost, and sales 
price of various crops. The influence of factors has important strategic significance for rural 
revitalization and China's economic development. 

Keywords: Single-Objective Programming, Spearman Correlation Analysis, Multi-Objective 
Optimization (MOP) 

1. Introduction 

The phrase "the land is the foundation of the people" underscores the critical role of arable land as a 
fundamental resource for rural development. Enhancing the production efficiency of farmland crops, 
reducing management costs, and mitigating the impact of external uncertainties are essential for 
achieving rural revitalization and sustainable economic growth in China. Despite the increasing 
diversification and modernization of agricultural practices, challenges remain in aligning crop types, 
planting seasons, and plot characteristics with market demand, production costs, and environmental 
variability. Therefore, selecting appropriate crop varieties, planting seasons, and plot types is crucial for 
optimizing agricultural outcomes.  

Recent research has made significant strides in crop planting strategies. For instance, Hervé 
Vanderschuren et al. [2] investigated the role of proteomics in crop cultivation, highlighting its 
contributions to understanding protein composition, regulation, and modification in plant systems. 
Similarly, Wu et al. [1] utilized a CPSO (Chaotic Particle Swarm Optimization) model to optimize crop 
planting structures in irrigation areas, achieving efficient water resource utilization. In the context of crop 
pricing, Jiang et al. [3] developed a multi-objective chaotic game optimization algorithm for energy 
futures price prediction, providing valuable insights into the impact of market dynamics on crop planting 
strategies. Additionally, Roy et al. [4] systematically evaluated land degradation caused by climate 
change and geo-environmental factors, offering a comprehensive framework for addressing sustainability 
challenges in agriculture. Finally, Peng et al. [5-7] examined the resilience of agricultural strategies to 
geological disasters, emphasizing the importance of adapting to natural and climatic uncertainties. 

However, their studies often overlook critical constraints that influence crop planting strategies. For 
example, Vanderschuren et al. [2] focused primarily on proteomics without considering key factors such 
as yield limitations relative to expected sales volume, restrictions on the number of plots allocated per 
crop, minimum planting area requirements for individual crops, and the interplay between crop yield, 
geological conditions, and market dynamics. Building on the foundational work of Vanderschuren et al. 
[2] and Wu et al. [1], this study addresses these gaps by integrating multi-objective optimization, 
Spearman correlation analysis, and nonlinear programming. Our approach aims to refine crop planting 
strategies, balancing productivity, cost efficiency, and risk mitigation in dynamic agricultural systems. 
By incorporating these constraints, we propose a comprehensive framework for optimizing crop planting 
plans under conditions of uncertainty, contributing to the sustainable development of rural economies. 
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2. Optimization Models and Algorithms 

2.1 Linear Programming model 

The linear programming model is a type of mathematical optimization framework that deals with 
linear objective functions and linear constraints. Its primary goal is to find the optimal solution that either 
maximizes or minimizes the objective function while satisfying all constraints. This model is extensively 
utilized in areas such as resource allocation, production planning, and logistics, where efficient and 
optimal solutions are critical. 

To address agricultural challenges, we propose a modeling framework using Spearman correlation to 
analyze planting season, yield, crop type, and land parcel relationships, guiding optimization models. 

2.2 In the case of considering unsold waste, establish a linear programming model for calculation 

Based on the analysis results of the Spearman model above, we have established a linear 
programming model to further study the relationship between the four elements. 

The Linear Programming (LP) model is a mathematical optimization technique used to maximize or 
minimize a linear objective function subject to a set of linear equality or inequality constraints. It is 
widely applied in fields such as operations research, economics, logistics, and resource allocation. The 
general form of an LP model is 

Max f = ∑  𝑛𝑛
𝑖𝑖=1 ∑  𝑚𝑚

𝑗𝑗=1 ∑  2
𝑘𝑘=1 �𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 ⋅ 𝑌𝑌𝑗𝑗 ⋅ 𝑃𝑃𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 ⋅ 𝐶𝐶𝑗𝑗�                  (1) 

Min g = 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 ⋅ 𝑌𝑌𝑗𝑗 − 𝐷𝐷,∀𝑗𝑗                            (2) 

Where 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 is the area of planting the j-th crop on the i-th plot of land in the k-th season (acre), 
𝑌𝑌𝑗𝑗−𝑡𝑡ℎ is acre yield of crop j (jin/acre),𝑃𝑃𝑗𝑗−𝑡𝑡ℎ is Sales unit price of the j-th crop (yuan/jin),and 𝑐𝑐𝑗𝑗−𝑡𝑡ℎ is 
the planting cost of the j-th crop (yuan/acre). 

Constraint 1: Production does not exceed expected sales volume: 

𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 ⋅ 𝑌𝑌𝑗𝑗 ≤ 𝐷𝐷                                (3) 

Constraint 2: Constraint on the planting area of the plot: 

∑  𝑚𝑚
𝑗𝑗=1 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 ≤ 1201,∀𝑖𝑖 = 1,2, … ,𝑛𝑛,∀𝑘𝑘 = 1,2                   (4) 

Where 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 is the area of planting the j-th crop on the i-th plot of land in the k-th season (acre). 

Constraint 4: Constraints on planting leguminous crops within three years: 

∑  6
𝑘𝑘=1 𝑥𝑥𝑖𝑖,𝑗𝑗legume ,𝑘𝑘 ≥ 1,∀𝑖𝑖 = 1,2, … ,𝑛𝑛                      (5) 

Where 𝑗𝑗legume  is a collection of all leguminous crops,𝑘𝑘 = 1,2, . . . ,6 is Six seasons in three years. 

Constraint 5: The area of a single planting plot should not be too small as a constraint: 
𝑚𝑚𝑚𝑚
ΣΣ𝐷𝐷𝑖𝑖,𝑖𝑖′ ⋅ 𝑥𝑥𝑖𝑖,𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖′,𝑗𝑗 ≤ 𝐶𝐶
𝑖𝑖 = 1𝑖𝑖′ = 1

                            (6) 

Where Di,i′ is The distance between plot i and plot i`,Xi,j and Xi′ , j′ is Planting area of two blocks. 

2.3 Differential Evolution 

Differential Evolution (DE) is a population-based stochastic optimization algorithm that uses 
mutation, crossover, and selection to solve complex, nonlinear, and multimodal optimization problems 
efficiently. To further analyze and obtain the optimal planting plan for the rural crops from 2025 to 2030, 
we have chosen the following algorithm Genetic inheritance: 

𝐯𝐯𝑖𝑖
(𝑔𝑔+1) = 𝐱𝐱𝑟𝑟𝑟𝑟

(𝑔𝑔) + 𝐹𝐹 ⋅ �𝐱𝐱𝑟𝑟(𝑛𝑛+1)
(𝑔𝑔) − 𝐱𝐱𝑟𝑟(𝑛𝑛+2)

(𝑔𝑔) � (2024 ≤ 𝑔𝑔 < 2030)               (7) 

Where Xrn(g) is initial annual output, Xr(n+1)(g) is initial year sales unit price per acre, Xr(n+2)(g) 
is initial year sales cost, Vi(g+1) is expected planting quantity. 
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F: (1 0 0 1) An indicator vector that can be inherited, with values ranging from 0 to 1, is used to mark 
whether to plant or not, in order to prevent repeated planting constraint 

𝑥𝑥𝑖𝑖,𝑗𝑗,1 × 𝑥𝑥𝑖𝑖,𝑗𝑗,2 = 0,∀𝑖𝑖 = 1,2, … ,𝑛𝑛,∀𝑗𝑗 = 1,2, … ,𝑚𝑚                   (8) 

Where 𝑥𝑥𝑖𝑖,𝑗𝑗,1 is season 1 planted a certain crop,𝑥𝑥𝑖𝑖,𝑗𝑗,2 is season 2 planted a certain crop. 

3. Result 

3.1 Spearman correlation 

Using Spearman correlation analysis, analyze the correlation between planting season, yield per mu, 
crop type, and plot type.  

Table 1 Spearman correlation 

  Planting season_x yield per acre/jin Crop type Land type 
Planting season_x 1 (0.000***) 0.753 (0.000***) 0.814 (0.000***) 0.747 (0.000***) 
yield per acre/jin 0.753 (0.000***) 1 (0.000***) 0.614 (0.000***) 0.693 (0.000***) 

Crop type 0.814 (0.000***) 0.614 (0.000***) 1 (0.000***) 0.753 (0.000***) 
Land type 0.747 (0.000***) 0.693 (0.000***) 0.753 (0.000***) 1 (0.000***) 

Explanatory: ***, **, *represent significant levels of 1%,5%, and 10%respectively 
The results showed that the significant P-values of all four were less than 0.05, indicating a significant 

relationship between yield per mu and crop type, plot type, and planting season in the Table 1. This 
indicates a good correlation between yield per mu and these three factors.  

3.2 The Linear Programming (LP) model 

Table 2 Optimal Crop Planting Strategy (partial) from 2024 to 2030 

 Parcel name soybean Black beans Red beans mung bean Climbing beans 

Season 1 

A1 0 0 0 0 0 
A2 0 0 0 0 0 
A3 0 0 0 0 0 
A4 0 0 0 0 0 
A5 0 0 0 0 0 
A6 0 0 0 0 0 
B1 0 0 60 0 0 
B2 0 0 0 0 0 
B3 0 0 0 0 0 
B4 0 0 0 0 0 
B5 0 0 0 0 0 
B6 0 0 0 0 0 
B7 0 0 0 0 0 
B8 0 0 0 0 0 
B9 0 0 0 0 0 
B10 0 0 0 0 25 
B11 0 0 0 0 0 
B12 0 45 0 0 0 
B13 0 0 0 0 0 
B14 0 0 0 0 0 
C1 0 0 0 0 0 
C2 15 0 0 0 0 
C3 0 0 0 0 0 
C4 0 0 0 0 0 

Subsequently, a linear programming model was used for analysis, with constraints including: based 
on the planting area of the plot, preventing replanting, planting legumes at least once within three years, 
and ensuring that the area of a single planting plot is not too small. By further processing the data, the 
optimal planting plan for 2024 to 2030 is shown in Table 2. 
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3.3 Differential Evolution 

Table 3 Crop yields (partial) from 2024 to 2030. 

 Parcel name soybean Black beans Red beans mung bean Climbing beans 

Season 1 

A1 0 0 0 0 0 
A2 0 0 0 55 0 
A3 0 0 0 0 0 
A4 0 0 0 0 0 
A5 0 0 0 0 0 
A6 0 0 0 0 0 
B1 0 0 0 0 0 
B2 0 0 0 0 0 
B3 0 0 0 0 0 
B4 0 0 0 0 0 
B5 0 0 0 0 0 
B6 0 0 0 0 0 
B7 0 0 0 0 0 
B8 0 45 0 0 0 
B9 0 0 0 0 0 

B10 0 0 0 0 0 
B11 0 0 0 0 0 
B12 0 0 0 0 0 
B13 0 0 0 0 0 
B14 0 0 0 0 0 
C1 0 0 0 0 0 
C2 15 0 0 0 0 
C3 0 0 0 0 0 
C4 0 0 0 0 18 

Finally, a differential evolution (DE) algorithm was employed to optimize the planting plan for the 
rural area. This algorithm was configured by setting four key variables: the expected planting amount, 
the initial year yield, the initial year unit price per acre, and the initial year planting cost. These variables 
were chosen to comprehensively capture the economic and agricultural dynamics of the region. The 
differential scaling factor FF, which controls the mutation and crossover operations in the DE algorithm, 
was carefully tuned to a range between 0.5 and 1 to ensure a balance between exploration and exploitation 
during the optimization process. This range was selected based on preliminary experiments to avoid 
premature convergence while maintaining efficient search capabilities. 

The DE algorithm iteratively refined the solution by generating new candidate solutions through 
mutation, crossover, and selection operations. The mutation operation introduced diversity by combining 
differences between randomly selected individuals in the population, while the crossover operation 
blended the mutated solutions with the current population to create trial solutions. The selection operation 
then compared the trial solutions with the current population, retaining the better-performing individuals 
for the next generation. This process continued until convergence criteria were met, ensuring that the 
final solution was robust and near-optimal. 

Building on the results of the DE algorithm and integrating insights from the previously applied 
genetic algorithm, the optimal planting plan for the rural area from 2024 to 2030 was derived. This plan, 
illustrated in Table 3, provides a detailed roadmap for maximizing agricultural productivity and economic 
returns over the specified period. The Table highlights key trends, such as the recommended crop 
distribution, projected yield improvements, and cost-effective strategies for scaling production. The 
integration of these two algorithms ensured a comprehensive exploration of the solution space, 
accounting for both short-term constraints and long-term sustainability goals. The final planting plan 
serves as a valuable decision-making tool for stakeholders, enabling them to allocate resources efficiently 
and adapt to changing market and environmental conditions. 

4. Conclusions and outlooks 

This study comprehensively analyzed the influencing factors associated with the planting and sales 
of seven different crops, focusing on the significant relationships between four major elements of crop 
cultivation: plot type, planting season, crop type, and yield per mu. By employing a combination of 
Spearman correlation analysis, linear programming (LP) models, and differential evolution (DE) 
algorithms, the research successfully identified the optimal planting plan for a rural area from 2024 to 
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2030. The findings revealed that yield per mu is significantly correlated with crop type, plot type, and 
planting season, highlighting the importance of these factors in agricultural planning. The LP model, 
constrained by factors such as planting area, crop rotation, and minimum plot size, provided a robust 
framework for optimizing crop selection and distribution. Additionally, the DE algorithm, which 
considered variables like expected planting amount, initial year yield, unit price, and planting cost, further 
refined the planting strategy, ensuring a balance between productivity, cost efficiency, and risk mitigation. 
However, our model and approach still have some limitations that need to be improved. For instance, the 
method used in this study is relatively simplistic and lacks innovation when addressing prediction 
problems, and it does not provide a comparative analysis of multiple algorithmic models. A deeper 
analysis of the economic aspects of different crops in the data should be conducted to develop a more 
optimal crop planting strategy tailored to the specific rural context. 

The results demonstrated that integrating multi-objective optimization techniques with correlation 
analysis can effectively improve agricultural productivity, reduce management costs, and mitigate the 
impact of external uncertainties. This approach not only enhances the economic viability of farming but 
also contributes to sustainable rural development by aligning crop cultivation with local environmental 
and market conditions. 

While this study provides valuable insights into optimizing crop planting strategies, there are several 
areas for future improvement and exploration: 

Incorporation of Multiple Prediction Models: The current study primarily relied on linear 
programming and differential evolution algorithms. Future research should consider integrating 
additional prediction models, such as machine learning algorithms, simulation-based approaches, and 
statistical models. By comparing the results of different models, more accurate and adaptable planting 
strategies can be developed, particularly in the face of climate variability and market fluctuations. 

Integration of Technological Advancements: Future research should explore the integration of 
emerging technologies, such as precision agriculture, remote sensing, and IoT (Internet of Things), to 
enhance data collection and decision-making processes. These technologies can provide real-time 
monitoring and predictive analytics, further improving the accuracy and efficiency of crop planning. 

In conclusion, while this study lays a solid foundation for optimizing crop planting strategies, there 
is significant potential for further research to address its limitations and explore new avenues. By 
leveraging advanced modeling techniques, economic analysis, and technological innovations, future 
studies can develop more robust and adaptive agricultural strategies that contribute to the sustainable 
development of rural economies. 
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