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Abstract: Different from the existing CNN-based models, a novel method based on the transformer 

model is proposed in this paper, to further improve the classification accuracy of hyperspectral image 

(HSI). Specifically, a deep network model is constructed with the Transformer-iN-Transformer (TNT) 

modules, to carry out end-to-end classification. The outer and inner transformer models in the TNT 

module can extract the patch-level and pixel-level features respectively, to make full use of the global 

and local information in the input cubes. Experimental results show that the proposed method can 

achieve better classification performance than the existing CNN-based models. In addition, using the 

transformer-baesd deep model without convolution to classify HSI provides a new idea for the related 

researches. 
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1. Introduction 

In the field of remote sensing, hyperspectral image (HSI) classification has always been one of the 

most attractive research hotspots. In the whole process of HSI processing and analysis, HSI 

classification is one of the most important links, and its accurate classification results can provide 

strong data support for the follow-up tasks, which has been widely used in fine agriculture, land-use 

planning and many other fields[1]. 

In the early research of HSI classification, machine learning methods such as support vector 

machine (SVM), principal component analysis (PCA) and extended morphological profile (EMP) have 

been widely used[2]. However, the above methods cannot make full use of the deep abstract features in 

HSI, so they cannot obtain satisfactory classification results. In contrast, deep learning methods can 

automatically learn the deep abstract features conducive to the target tasks layer by layer, and these 

features are often highly informative and robust. Deep learning models such as stacked autoencoder 

(SAE), recurrent neural network (RNN), deep belief networks (DBN) and convolutional neural 

networks (CNN) have been widely applied in HSI classification[3], and have achieved better 

classification performance than traditional classification methods with sufficient training samples. 

Compared with other deep learning models, 2D-CNN and 3D-CNN can make more full use of the 

spatial-spectral information utilizing unique convolution operation to directly process the HSI data with 

grid structure, so they can obtain higher classification accuracy[4]. For example, Lee et al designed a 

novel contextual deep CNN model by introducing multi-scale 2D convolutional filter bank and residual 

connection[5]. Liu et al. constructed a deep spatial-spectral network utilizing 3D convolution, and the 

obtained classification accuracy was obviously better than that of the traditional methods[6]. In recent 

years, novel network structures such as generative adversarial networks (GAN), capsule network (CN) 

and graph convolutional network (GCN) have been introduced into HSI classification, to further 

improve the classification performance[7]. In the above network models, CNN is always an 

indispensable and important module.  

As is known to all, CNN remains dominant in HSI classification. However, CNN indeed possesses 

some defects: it is not good at modeling the long-distance dependencies and obtaining global context 

information[8]. By contrast, the transformer model can better utilize the global context information 

within a large range by treating the input image as the sequential patches[9]. In view of this, this paper 

presents a novel deep transformer network, to further improve the accuracy of HSI classification. 

Specifically, the deep network model is constructed with Transformer-iN-Transformer (TNT)[10] 

structure as the basic module. The inner transformer block and the outer transformer block in the TNT 
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module can respectively model the pixel-level and patch-level features, to make full use of the local 

and global information in the input cubes. Experimental results on two public HSI data sets show that 

the proposed method can achieve better classification performance than the existing CNN models. 

Meanwhile, using transformer-based deep model without any convolution operation to classify HSI in 

this paper provides a new idea for HSI classification. 

2. Proposed Method 

2.1. Workflow 

 

Figure 1: Workflow of the proposed method. 

Figure. 1 shows the workflow of the proposed method. Firstly, the HSI is directly divided into a 

number of cubes without dimensionality reduction, to make full use of the spatial-spectral information. 

Then, each cube is sequentially divided into multiple patches referring to [9]. After unfold and linear 

transformation operations, each patch is converted into a patch embedding and several pixel 

embeddings. Finally, the patch embeddings and pixel embeddings are respectively added to their 

corresponding position encodings, and the resulting vectors are input together into the designed deep 

network model containing L TNT modules for classification. In the TNT modules, the outer 

transformer models can take full advantage of the global information, and the inner transformer models 

can take full advantage of the local information. The proposed method takes HSI as input and 

classification results as output, and possesses an end-to-end structure. 

2.2. TNT Module 

The TNT module is the core of the proposed method which can make full use of the global and 

local information in the input cubes. Before introducing the TNT module, we first review the vision 

transformer model that is widely used for the computer vision tasks. 

 

Figure 2: Illustration of a vision transformer model. 

Figure 2 describes the network structure of a vision transformer model, which consists of three 

main parts: multi-head attention mechanism (MHA), multilayer perceptron and layer normalization 

(LN). MHA is the key part in the transformer model for feature learning, and MLP is introduced for 

feature transformation and nonlinearity. As a data normalization layer, LN can ensure the training 

stability and rapid convergence of the model. In addition, residual connections are introduced to take 

full advantage of the abstract features at different levels. Self-attention mechanism is the basic unit of 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 4, Issue 7: 11-17, DOI: 10.25236/AJCIS.2021.040703 

Published by Francis Academic Press, UK 

-13- 

MHA. In the self-attention mechanism, the input embeddings are firstly transformed to query matrix, 

key matrix and value matrix. The output actually is the weighted sum of the value vectors, and the 

weights assigned to each value vector are calculated from the query vectors and the corresponding key 

vectors. 

 

Figure 3: Illustration of a TNT module. 

The visual transformer model views an input image as a sequence of patches, but ignores the 

intrinsic structure information inside each patch. To make full use of the global and local information 

within the input cubes, TNT module is introduced as the core of constructing the deep network model. 

For the input cube, we first split it into n patches , where ( , )p p  is the 

size of each patch. Then, each patch is further transformed into multiple ( ', ')p p  pixel embeddings 

with unfold operation and linear projection. Formally, the sequence of patch tensors is as follows: 

                                   (1) 

where each patch tensor 
0

iY  is viewed as a sequence of pixel embeddings, and 2'm p . 

As shown in Figure 3, a TNT module contains two transformer models, one of which operates 

across the patch tensors and the other operates across the pixel embeddings. For the pixel embeddings, 

the inner transformer is used to explore the relation between pixels and extract the pixel-level features: 
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where l = 1, 2,..., L index the layers and L is the total number of layers. This process can build the 

relationship among pixels by computing interactions between two pixel embeddings, to effectively 

utilize the local information within the input cubes. As for the patch level, the patch embedding 

memories are created to store the sequence of patch-level features:  , 

where 
class
Z  represents the class token. In each TNT module, the patch tensors are transformed into the 

domain of patch embeddings by linear projection and added into the patch embeddings: 

1 1 1 1 1( )       ，i i i

l l l l lZ Z Vec Y W b                             (3) 

where Vec represents the flatten operation, W and b are the learnable weights and bias respectively. 

Similarly, a transformer module (outer transformer) is used for feature learning: 
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This process can effectively learn the patch-level features by capturing the intrinsic information 

from the sequence of patches. In other words, the outer transformer can make full use of the global 

information in the input data. 

As is mentioned above, the TNT module can process pixel-level and patch-level data 

simultaneously. This means that the deep network model built by stacking TNT modules can take full 

advantage of the global and local information in the cubes and learn richer and more robust features, to 

further improve the accuracy of HSI. 
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3. Experimental Results and Analysis 

3.1. Data Sets and Evaluation Criteria 

To verify the effectiveness of the proposed method, two public HSI, Salinas (SA) and Houston 

2013(HS) are selected for experiments. The SA data set is collected by AVIRIS sensor. It possesses 

204 spectral bands and 16 labelled classes. The spatial size is 512 × 217 with 3.7 m/ pixel spatial 

resolution. The HS data set is collected by ITRES-CASI1500 sensor. It possesses 144 spectral bands 

and 15 labelled classes. The spatial size is 349 × 1905 with 2.5 m/ pixel spatial resolution. For each 

data set, 200 labeled samples per class are randomly selected as training samples, and the remaining 

samples are used as testing samples to evaluate the classification performance of the model. To 

quantitatively evaluate the classification results, the overall accuracy (OA), average accuracy (AA) and 

kappa coefficient are selected as the evaluation criteria. 

3.2. Hyperparameters Settings 

Firstly, we explore the influence of the depth of network on classification accuracy. Figure 4 

describes the relationship between the depth of network and the classification accuracy. For the SA and 

HS data sets, the classification accuracy of the model generally increases first and then decreases with 

the increase in the number of TNT modules. This indicates that, appropriate network structure can 

achieve the best classification performance, while too many or too few network layers may lead to a 

decline in classification accuracy. 

 

Figure 4: Relationship between the number of the TNT modules and classification accuracy on the SA 

and HS data sets. 

 

Figure 5: Relationship between the number of attention heads (H) and classification accuracy on the 

SA and HS data sets. 

Secondly, the relationship between the number of attention heads and the classification accuracy is 

analysed. Theoretically, similar to the convolution kernels in the CNN models, an appropriate increase 
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in the number of attention heads should enable the model to learn richer and more robust features. The 

results are shown in Fig. 5. In general, with the increase of H, the classification accuracy of the model 

increases gradually at first and then decreases slowly. When H is equal to 6, the classification accuracy 

reaches the maximum value. 

In addition, a combination of large iteration times and small learning rate is adopted for training. 

Specifically, the number of training iterations is set as 500, the learning rate is set as 0.00001, and the 

Adam optimization algorithm is adopted to ensure that the designed model is fully trained. The batch 

size is set as 64. The input cube is first split into 16 patches in a spatial order, and each patch is further 

split into several pixel patches with a width of 2. In the TNT modules, the dimensions of patch 

embedding and pixel embedding are set to 128 and 64 respectively. 

3.3. Comparison and Analysis 

Different from the dominant CNN-based model for HSI classification, this paper proposes a novel 

deep transformer network, to further improve the accuracy of HSI classification. To verify the 

effectiveness of the proposed method, the classification results are compared with the classic machine 

learning method RBF-SVM and 5 advanced CNN-based models including CNN-PPF[11], CDCNN[5], 

RES-3D-CNN[6], DCCNN[12] and S-CNN[13]. In addition, to reduce the fluctuation of classification 

results caused by the randomness of sample selection, the average value of 10 experiments is used as 

the final result, further enhancing the persuasiveness of the experimental results. 

Table 1: The classification results OF different methods on the SALINAS data set. 

Class No. SVM CNN-PPF CDCNN RES-3D-CNN S-CNN Ours 

OA 91.20 92.04 95.54 97.39 96.06 99.32 

AA 95.46 95.03 97.32 98.99 98.19 99.54 

kappa 90.20 91.17 95.04 97.09 95.48 99.25 

1 99.20 100.00 99.50 100.00 100.00 100.00 

2 99.62 99.76 100.00 100.00 100.00 100.00 

3 99.70 97.26 98.21 100.00 99.10 100.00 

4 99.50 97.20 99.43 99.36 99.86 99.43 

5 96.75 98.61 99.96 99.78 99.93 99.87 

6 99.42 99.62 99.95 100.00 100.00 99.98 

7 99.36 99.97 99.71 99.97 99.78 100.00 

8 84.75 88.15 94.58 91.15 92.80 99.42 

9 99.10 98.83 99.98 99.94 99.97 99.90 

10 93.29 85.42 99.78 99.15 97.80 99.13 

11 97.85 91.21 91.96 99.07 98.40 100.00 

12 99.84 99.23 99.90 100.00 100.00 98.17 

13 98.58 98.49 100.00 100.00 100.00 99.63 

14 95.79 96.56 99.17 99.91 100.00 100 

15 65.74 73.75 81.13 95.55 83.51 97.16 

16 98.89 96.49 93.89 100.00 99.83 100.00 

Tables 1-2 lists the classification results of different methods on the SA and HS data sets. As we 

can see, the classification accuracy of SVM is obviously lower than that of the other 5 deep learning-

based methods. Deep learning models can extract the deep abstract features that are more informative 

and robust, so they can obtain higher classification accuracy. Among the four CNN-based models, 

RES-3D-CNN using 3D convolution and metric learning-based S-CNN can achieve better 

classification performance. The proposed method can achieve better classification performance. 

Among all the listed methods, the proposed method can obtain the best classification results according 

to OA, AA and kappa. On the one hand, MHA enables the model to focus on a wealth of features 

conducive to the classification tasks, on the other hand, the TNT modules containing the inner and 
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outer transformer can enable the model to make full use of the global and local information in the input 

cubes, to further improve the classification accuracy. 

Table 2: The classification results OF different methods on the HOUSTON 2013 data set. 

Class No. SVM CNN-PPF CDCNN RES-3D-CNN S-CNN Ours 

OA 91.41 94.50 95.34 96.03 98.12 98.68 

AA 91.95 94.76 95.84 96.56 98.41 98.77 

kappa 90.71 94.06 94.97 95.71 97.96 98.57 

1 95.73 96.71 84.49 87.14 99.66 99.76 

2 97.94 98.71 97.42 97.97 93.67 97.73 

3 100.00 99.86 99.71 99.85 99.71 99.86 

4 99.83 99.27 99.32 96.55 98.78 97.13 

5 96.39 97.85 97.69 99.92 99.84 99.76 

6 99.69 100.00 94.20 95.03 100.00 98.78 

7 84.71 94.35 97.36 97.86 97.51 95.77 

8 95.19 96.67 96.65 95.10 100.00 99.51 

9 82.19 88.23 92.31 95.58 97.66 97.98 

10 86.03 92.26 94.02 92.50 95.64 99.11 

11 86.68 88.70 98.01 99.50 99.19 99.76 

12 83.59 88.42 94.48 94.05 97.44 98.95 

13 73.57 83.96 97.61 97.40 99.12 99.58 

14 97.71 96.61 98.16 100.00 99.77 98.39 

15 100.00 99.85 96.21 100.00 98.21 99.55 

 

Figure 6: Classification maps resulting from the different methods on the HS data set. 

Figure 6 shows the classification maps of the different classification methods on the HS data set. It 

can be seen that the proposed method can produce the classification map closest to the ground truth, 

which visually verifies the effectiveness of the proposed method. 

4. Conclusions 

Different the dominant CNN-based methods, this paper designs a novel deep transformer network 

by stacking the TNT modules, to further improve the accuracy of HSI classification. The inner and 

outer transformer block in the TNT modules can extract the pixel-level and patch-level features 
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respectively, making full use of the global and local information in the input HSI cubes. Experimental 

results on two public HSI data sets show that the proposed method performs better than SVM and 

several existing CNN-based models. 
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