
International Journal of Frontiers in Engineering Technology 

ISSN 2706-655X Vol.4, Issue 4: 21-32, DOI: 10.25236/IJFET.2022.040404 

Published by Francis Academic Press, UK 

-21- 

Source Code Vulnerability Mining Method Based on 

Graph Neural Network 

Guo Li 

Department of Journalism and Communication, Anhui Vocational College of Press and Publishing, 

Hefei, 230601, Anhui, China 

Abstract: In recent years, deep learning has completely changed many machine learning tasks, and the 

data in these tasks is usually expressed in Euclidean space. However, as more and more applications 

need to use non-Euclidean data, vulnerability mining is becoming more and more important. With the 

successful development of neural networks, many machine learning tasks, such as object detection, 

image classification, and speech recognition, once relied heavily on manual feature engineering to 

extract features, and can now be completed with various end-to-end deep learning models, such as 

Convolutional neural network, long and short-term memory networketc.Vulnerability mining is an 

important way to prevent and control system vulnerabilities. Traditional methods of vulnerability 

mining can no longer meet people's needs. In order to enable the vulnerability mining application to 

meet people's needs, we established a related source code vulnerability mining model based on graph 

neural networks. By investigating relevant literature, conducting interviews with professionals, etc., 

collected data from databases such as HowNet, Wanfang Database, SSCI, etc., and built a model of 

source code vulnerability mining based on graph neural networks using parallel algorithms. Through 

simulation, we found that the method of mining source code vulnerabilities based on graph neural 

networks is becoming more and more accepted by people, and the increase in 2016 reached 0.16. 

Moreover, the efficiency of source code vulnerability mining based on graph neural network is much 

higher than other vulnerability mining methods, and the mining speed is more than 20% ahead of other 

mining methods. This shows that source code vulnerability mining based on graph neural network can 

play an important role in preventing system vulnerabilities. 
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1. Introduction 

Vulnerability discovery is the focus area of current computer security research. At present, most of 

the vulnerability mining methods require a lot of manual auditing work, but the code analysis is 

complicated and time-consuming, resulting in inefficient vulnerability mining. In view of the 

undecidability of the vulnerability mining problem itself, it is a basic tool design principle to assist 

security analysis instead of completely replacing security analysts [1]. Through the analysis of system 

attack events in recent years, security vulnerabilities are the main cause of hidden security risks in the 

system, and attackers can use security vulnerabilities to attack the system. With the help of graph neural 

network mining method, the use of self-contained information in source code to assist software analysis 

is a novel research idea [2]. 

The current general approach to system vulnerabilities is a fuzzing method based on network 

protocols. The discovery of system vulnerabilities improves the effectiveness of test cases, but these 

research results still have some problems[3-4]: 

Li Yun believes that as time changes, software has become more and more complex, its scale and 

vulnerabilities are also increasing, and more and more diverse, traditional vulnerability mining methods 

can no longer adapt, there are high false positives, false negatives, etc. problem. It believes that to 

solvethe problem of system vulnerabilities, it is necessary to conduct vulnerabilities mining based on 

machine learning. It sorts out the process of machine learning, summarizes relevant experience, and 

makes relevant elaboration on the preparation work required for machine learning. The attention issues 

and the prospects of machine learning are related to the discussion [5]; Duan Bin believes that in 

today's frequent control system accidents, it is necessary to innovate vulnerability mining technology to 

ensure system security. The solution given is based on the method of dynamic taint analysis, explaining 

the theory of dynamic taint, designing related experiments, quantifying dangerous and sensitive words 
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that cause loopholes, making guiding information, importing it into the model, and comparing 

experiments, It is proved that the method based on dynamic taint can improve the efficiency of the 

system in vulnerability mining [6]. Lin Liangcheng believes that after vulnerability mining has become 

an important field, vulnerability mining can be carried out through fuzzing. In the article, he explained 

the meaning of the fuzzing theory and made a test model. Use relevant examples to run in the model, 

and use program instrumentation to collect system exceptions and discovered vulnerabilities, avoiding 

a large number of vulnerabilities in the system. In this experiment, the fuzzing method has achieved 

better than traditional vulnerabilities. Collect better results [7].  

This article discusses vulnerability modeling and vulnerability discovery methods based on code 

attribute graphs. The generation strategy of abstract syntax tree, control flow graph, and program 

dependency graph is elaborated, and its constituent elements are analyzed in detail. It has opened up a 

new theoretical perspective for deep chemists’ knowledge and understanding of vulnerability mining, 

standardized definitions of common vulnerability modes, focused on the polluting vulnerability query 

design with the strongest query capabilities, and conducted experiments on the description of the 

vulnerability query Verification and case analysis. 

2. Source Code Vulnerability Mining Method 

2.1 Graph Neural Network 

Graph neural network is used to process data in the graph domain, for an undirected graph

 wevG ,, ，Here V refers to the nodes in the graph, e refers to the edges that exist between nodes, 

and w refers to the similarity parameter between nodes in the graph domain [8]. The graph neural 

network takes graph structure as input. For every node in G there is  Ttpv , ，Where p is used to 

represent the location information corresponding to the node, and t is used to represent the texture 

information of the node.  

In the graph neural network, each node has only the k nearest neighbors whose weight is closest to 

the edge e[9]. For each node, their local feature F is expressed as: 

 Tikiniiii fffF  ,..., 2211 (1) 

Their weights satisfy ikii www ＜＜＜ ...21 ， in order to control the parameters contributed by the 

characteristics of the node, in order to highlight the contribution of the central node and weaken the 

contribution of the distant node，This paper defines the calculation method as: 
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In order to improve the accuracy of the graph neural network, a model composed of multiple 

shallow convolutional neural networks is proposed, each of which is used to solve the same 

classification problem, and the final prediction result depends on multiple classifiers the result of the 

vote [10]. In terms of network topology, graph neural network uses edge network for communication. 

Geographically distributed fog nodes can infer their own location and track end-user equipment, and 

sense the information of nearby equipment, transmit messages in time, thereby improving real-time 

response. The distributed deployment characteristics of graph neural network at the edge of the network 

enable the edge of the network to directly calculate and store data and applications without other 

process steps [11]. Graph neural network can be understood as learning from other samples, so that it 

can absorb previous experience in vulnerability mining and continuously improve its efficiency [12]. 

2.2 Machine Learning 

To complete the source code vulnerability mining method based on graph neural network algorithm, 

we must first study the theoretical basis of neural network, which is also an indispensable and 

important part of this subject research [13]. Due to the huge amount of calculation required for machine 

learning, it is unrealistic and impractical to rely solely on people to calculate, so the help of computers 

is needed [14]. 
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For a machine learning algorithm, in order to verify the pros and cons of the algorithm and whether 

the algorithm can successfully solve people's problems, it must pass the evaluation and test of the 

model [15]. The sample error rate is defined as: 

      
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Sample correct rate: 
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The backpropagation algorithm is adopted to solve the difference of the first batch of data at the 

beginning [16]. Then adjust the weight value of each layer through the error. 

   332 * zg
t

  (5) 

In general, the difference between the predicted result of the model learned by the machine learning 

algorithm and the original result of the overall sample is called error[17]. For a good machine learning 

algorithm[18]. So what we can do is to make the training error smaller.  

For machine learning algorithms, the most widely used judgment methods mainly include the 

leave-out method, cross-validation method, and self-service method. The retention method is to divide 

the data set into two mutually exclusive subsets, which can be assembled into a whole set [19].  

2.3 Source Code 

With the increasing importance of software security, people expect developers to fix vulnerabilities 

in software systems as much as possible. However, in the face of massive code files, comprehensive 

detection and repair of potential vulnerabilities are very time-consuming and expensive [20]. Therefore, 

how to use data mining and other methods to detect code defects and guide software testers to detect 

and repair potential vulnerabilities has become a research hotspot that scholars at home and abroad pay 

attention to. Code defect detection usually adopts analysis and extraction of features in program source 

code, and uses machine learning algorithms to automatically learn modules with defects in the code. 

According to the different analysis methods, it can be roughly divided into conventional vulnerability 

code analysis, data flow and control flow analysis, code text mining, etc. [21]. 

Although conventional vulnerability code analysis methods can find code vulnerabilities more 

directly, they have limited ability to detect vulnerabilities that differ greatly from known vulnerability 

patterns. More importantly, it requires researchers to have a wealth of professional knowledge in the 

field of vulnerability mining and a certain scale of extremely high-quality training samples, which 

poses a huge challenge to researchers across fields. 

The learning of programming logic will play a vital role in many fields. In the field of vulnerability 

mining, by learning the programming logic of known vulnerabilities, you can find parts with similar 

logic in other programs, and provide guidance for traditional vulnerability mining techniques; in the 

field of software engineering, analyze and find out that does not conform to logical specifications The 

code snippets can improve the robustness and reliability of the software; in the field of software repair 

and automatic programming, through statistical analysis of programming logic, a code model is 

established to predict the missing part of the code statement [22]. Usually, each line of code in a 

program does not exist independently, and several lines of code before it jointly determine the 

appearance and use of the code. 

Compared with natural languages, programming languages have stricter requirements on 

grammatical structure and data types. There may be certain constraints between different objects, 

methods and even parameters. These constraint relationships reflect the rules of the language itself and 

the potential way of thinking of developers. Making full use of these constraints can make the 

statistical language model break through the limitation of relying solely on the occurrence probability 

of sentences/keywords in natural language, and make the programming logic model more in line with 

the developer's way of thinking [23]. In the source code construction process, the time complexity T of 

building the model can be expressed as: 
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The methods in the data structure class often implement some of the simplest data operations, with 

low mutual dependence, flexible invocation, and weak constraint relationships between methods [24]. 

2.4 Vulnerability Mining 

Traditional vulnerability mining methods mainly include three technical methods, namely reverse 

analysis, penetration testing and fuzzing testing. Reverse analysis is to obtain the source code of the 

program through the means of disassembly and debugging, and monitor the errors that may occur 

during the operation of the program. However, this technology requires a lot of manual code review 

work. The reviewers need to have excellent disassembly debugging technology and secure code 

evaluation capabilities. They require too much operating system professional skills for the staff, and the 

operating environment of the system is closed, and the system components cannot Export, it is difficult 

to disassemble and debug the system. Penetration testing technology is to establish a known attack 

vector to simulate attacks on the tested object and test the robustness of the tested object. This 

technology tests from the perspective of known attacks and cannot cover all the abnormalities that may 

cause the tested object. Circumstances, and the requirements for the staff's information security 

professional skills are too high, there is also the risk of industrial data information leakage when the 

system is handed over to the testing organization. Fuzzing testing technology is to detect vulnerabilities 

in the tested object in the form of "black box" testing through random input. It does not need to perform 

too many operations on the tested object. This technology has a high degree of automation and wide 

adaptation. According to the characteristics of industrial control systems and industrial control network 

protocols, corresponding improvements can be made. Therefore, domestic and foreign researchers 

often use fuzzy testing technology to construct network packets as test cases to mine the network 

protocols in the system. 

At present, most of the knowledge extraction and vulnerability locating research for software source 

code methods are focused on the use of some cloning and redundancy phenomena in the source code. 

The reused API has a relatively fixed usage pattern, and many functions in the software are similar. As 

a result, in large-scale software, many program fragments are very similar, with only minor differences. 

So programmers are likely to make the same mistakes in similar coding scenarios. The repetitiveness 

and redundancy of the software source code can help us dig and use most of the correct repetitive code 

segments and obtain standardized programming information to identify programming errors caused by 

imperfect modification and code omissions after copying and pasting or creating branches. 

The economic root cause that loopholes are difficult to eliminate is the asymmetry of loophole 

trading information. The manpower and material resources that software vendors invest in software 

security are not immediate. Sellers of vulnerable products have more information on software 

vulnerability information, that is, the quality evaluation of software products than buyers. This formed 

the "lemon market" effect proposed by Akerlov in economics. Buyers do not understand the pros and 

cons of products as well as sellers, and will choose products with average prices. As a result, 

high-quality products are eliminated because no one buys them. Inferior products are gradually 

replaced by medium-quality products in the current market due to low cost, which eventually leads to 

inferior products Flood the market. The discovery and verification of vulnerabilities still requires a high 

technical threshold. In the face of a wide variety of vulnerabilities, how to design a fast and efficient 

vulnerability mining method is still an urgent problem for computer software security researchers. 

Nowadays, the rise of a new wave of computer science and technology research represented by big data 

and deep learning has caused computer researchers to focus on new database technologies, data mining 

and machine learning. There have been many attempts to use data mining in software engineering. The 

application of data mining technology to the discovery of software vulnerabilities is still a relatively 

new topic, but there have been some preliminary research results. 

Vulnerability extraction at the source code level first uses compilation technology to parse the 

source code and extract API symbols. Simply put, API symbols refer to the name of the called function, 

parameter types, and the types of local and global variables. Use information retrieval methods to treat 

functions as articles, calculate the TFIDF value of each API symbol, and then map the function to a 
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vector; perform principal component analysis, find similar program bugs by searching for functions 

with similar semantics. 
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3. Source code vulnerability mining experiment based on graph neural network 

3.1 Experimental Analysis Object 

This paper conducts data statistics on different vulnerability mining systems, and compares the 

differences between them. Through relevant literature, statistics of these types of vulnerability mining 

methods over time, study the impact of related variables on system security, and build relevant model. 

3.2 Establish a Model Evaluation Index System 

Among them, the first-level evaluation index and the second-level evaluation index are relatively 

abstract and cannot be used as a direct evaluation basis. The third-level evaluation indicators should be 

specific, measurable and behavior-oriented, and can be used as a direct basis for teaching evaluation. 

3.3 Determine the Evaluation Weight 

Therefore, this article uses a combination of analytic hierarchy process and entropy method to 

determine the weight coefficient of each evaluation index of regional higher education. 

3.4 Comprehensive Evaluation Model 

In the specific implementation process, the two methods can be implemented separately. Finally, the 

results of the two models are compared. 

4. Source Code Vulnerability Mining Experiment Analysis 

4.1 Vulnerability Mining Method 

As time changes, people have made many attempts on vulnerability mining methods. Through 

questionnaire surveys and consulting a large amount of data, we have collected statistics on the most 

frequently used vulnerability mining methods in recent years, and converted them into specific values 

through model calculations. The data is shown in Table 1: 

Table1: Vulnerability mining method 

 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Missing semantics 1.94 2.38 2.13 2.21 2.29 2.34 1.97 2.06 2.2 

Code attributes 2.35 1.8 2.46 1.97 2.36 2.03 1.94 2.2 1.96 

Program dependency 1.99 2.08 1.98 1.89 2.09 2.49 1.8 2.19 1.94 

Iterative Algorithms 2.15 2.45 2.25 2.1 2.24 2.2 2.15 2.46 1.81 

Pollution properties 1.93 2.35 1.97 2.45 2.28 2.37 2.17 2.08 1.92 

Subject sensitivity 2 2.26 2.33 2.3 1.86 2.35 1.95 2.08 2.12 

Graph neural network 2.36 2.13 2.27 2.3 2.42 2.46 2.47 2.63 2.66 
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Figure 1: Methods of vulnerability mining 

From Figure 1 we can see that in the method of vulnerability mining, the people used in various 

methods are basically similar, and there is no uniformity of which types of methods. As time changes, 

the people using different methods are also constantly changing. Changes, among which the method 

used in this article, the source code vulnerability mining method based on graph neural network shows 

a trend of first decline and then rise, from 2014 to 2019, from 2.3 to 2.66, and from 2015, it has become 

people The most commonly used vulnerability mining method. We show the different growth trends 

from 2014 to 2019, as shown in Figure 2: 

 

Figure2: Growth trend of mining methods 

From Figure 2, we can see that the variation of the vulnerability mining methods used in the past 

five years is relatively large, but the graph neural network-based source code vulnerability mining 

method used in this article has been different in the past five years. It shows an upward trend. Among 
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them, the largest increase was in 2018, with an amplitude of 0.16, which also shows that the method of 

source code vulnerability mining is increasingly accepted by people. 

4.2 Vulnerability Mining Efficiency of Different Methods 

In order to study the difference between the efficiency of vulnerability mining by different methods, 

we have made statistics on the computing time, response time, number of vulnerabilities and mining 

speed of these types of mining methods. The specific data is shown in Table 2: 

Table2: Vulnerability mining efficiency 

 
Start 

speed(s) 

Running 

speed(s) 

responding 

speed(s) 

Speed of finding 

vulnerabilities(s) 

Number of 

vulnerabilities 

found 

Average 

number of 

discoveries 

Missing 

semantics 
19.1 20.8 24.8 19.7 86 15.6 

Code 

attributes 
18.9 23.2 23.4 23.5 77 14.7 

Program 

dependency 
18.1 18.9 20.5 21.7 82 14.9 

Iterative 

Algorithms 
18.8 23.6 21.3 24.5 69 13.5 

Pollution 

properties 
22.6 19.2 21.6 18.9 71 13.9 

Subject 

sensitivity 
22.1 21.7 19.7 24.4 62 12.7 

Graph neural 

network 
18.2 21.3 19.3 22.4 94 16.4 

 

Figure3: Difference in efficiency of mining methods 

It can be seen from Figure 3 that these methods have their own advantages in different fields. For 

example, program dependency mining is the fastest in terms of response speed, which only takes 19 

seconds, while other methods generally take more than 20 seconds. On the whole, source code 

vulnerability mining methods based on graph neural networks are only inferior to other methods in 

some areas, but comprehensive evaluation of the number and efficiency of mining vulnerabilities can 
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lead other methods. We use the model to digitize it for easy comparison, as shown in Table 3: 

Table3: Scores of different mining methods 

 
Start 

speed(s) 

Running 

speed(s) 

responding 

speed(s) 

Speed of finding 

vulnerabilities(s) 

Number of 

vulnerabilities 

found 

Average 

number of 

discoveries 

Missing 

semantics 
5.16 4.93 4.85 4.9 4.58 5.12 

Code 

attributes 
5.37 4.98 4.84 4.92 5.25 5.19 

Program 

dependency 
5.2 5.9 5.18 5.62 5.22 5.53 

Iterative 

Algorithms 
6.27 6.02 5.95 6.03 6.22 6.21 

Pollution 

properties 
6.62 4.72 6.44 6.91 6.72 6.74 

Subject 

sensitivity 
6.27 5.21 7.84 7.94 7.62 6.25 

Graph neural 

network 
7.87 8.08 8.46 7.91 8.23 7.83 

 

Figure 4: Difference in efficiency of mining methods 

From Figure 4, we can clearly see that in terms of the overall score, the source code vulnerability 

mining method based on graph neural network used in this article leads other mining methods with a 
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these data through the model, as shown in Table 4: 

Table4: Scores of different mining methods 

 
Machine 

learning 
Accuracy Recall rate 

False alarm 

rate 

False negative 

rate 

Comprehensive 

Evaluation 

Missing 

semantics 
2.72 3.58 2.84 0.97% 1.23% 16.9 

Code attributes 3.49 2.89 3.15 0.89% 1.15% 18.2 

Program 

dependency 
3.56 3.33 2.96 0.93% 0.99% 21.7 

Iterative 

Algorithms 
3.8 3.15 4.09 0.78% 0.83% 17.5 

Pollution 

properties 
4.69 4.53 4.35 0.72% 0.81% 19.3 

Subject 

sensitivity 
5.04 5 4.85 0.83% 0.94% 20.8 

Graph neural 

network 
5.16 5.77 5.68 0.22% 0.28% 28.5 

 

Figure 5: Vulnerability mining indicators 

From Figure 5, we can find that among the various indicators of vulnerability mining, the traditional 

vulnerability mining has the lowest score, and its false positives and underreports are also the most 

serious. This is because the traditional vulnerability mining methods are based on manual work. In the 

process, it is inevitable that there will be false negatives and false positives. For the graph neural 

network system, due to the use of computers and machine learning reasons, it will continue to correct 

itself, and the false positives and false negatives will occur. The probability of problems is smaller, so 

the source code vulnerability mining score based on graph neural networks is much higher than other 

methods. In order to verify the correctness of the results, we used the model for a 24-hour test run, and 

the results obtained are shown in Table 5: 
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Table 5: Model test run results 

 
Machine 

learning 
Accuracy 

Recall 

rate 

False alarm 

rate 

False negative 

rate 

Comprehensive 

Evaluation 

Missing 

semantics 
2.32 3.78 2.84 0.827% 0.927% 17.1 

Code attributes 3.24 2.91 3.15 0.815% 1.082% 18.9 

Program 

dependency 
3.67 3.53 2.96 0.952% 0.86% 22.1 

Iterative 

Algorithms 
3.79 3.05 4.09 0.692% 1.13% 16.8 

Pollution 

properties 
5.13 4.23 4.35 0.762% 0.795% 17.8 

Subject 

sensitivity 
4.74 4.86 4.85 0.793% 0.892% 23.6 

Graph neural 

network 
5.66 6.17 6.28 0.235% 0.267% 31.1 

 

Figure 6: Mining method under trial operation 

From Figure 6 we can see that after the model has been tested for one day, the data is statistically 

relevant. In this statistics, there is a certain deviation between the final test result and the prediction, as 

shown in Figure 7, but the difference is within the allowable range, which shows that the test results of 

the model can still be used as the final result, and the source code vulnerability mining method based 

on graph neural network is feasible. 
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Figure 7: Test result deviation 

5.Conclusions 

The granularity and the applicability of cross-program testing still need to be improved. In the 

process of feature analysis, the geometric similarity and texture similarity between nodes are 

considered at the same time, which effectively eliminates the influence of background or noise and 

enhances the ability of features to express local information. By training a sub-neural network for each 

node in the graph structure, the original complex problem is decomposed into multiple local 

sub-problems, and further parameters are transferred in machine learning according to the graph neural 

network, which effectively improves the efficiency of algorithm training. 

Perform threat correlation analysis and mining on the vulnerabilities that have already erupted, 

starting from the sentence where the vulnerability occurs, and then looking for information such as 

identifiers, keywords, key sentences and statements that are strongly related to software vulnerabilities. 

This can be combined with technologies such as vulnerability information collection and vulnerability 

code keyword extraction to do the establishment of an automated vulnerability knowledge base. 

Source code vulnerabilities mining based on graph neural network, build statistical models from the 

source code that can reflect the programming thinking logic of developers, and use programming logic 

models to detect code defects, providing a foundation for intelligent mining of vulnerabilities, 

automated programming and other cutting-edge technologies Sexual research expounds the concept of 

programming logic, analyzes the related problems of research programming logic, and clarifies the 

research content and interrelationship of each part of programming logic research, which can better 

solve the problem of system security vulnerabilities. 
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