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Abstract: This bioinformatics investigation systematically interrogates leukemia stem cell (LSC) 
transcriptomes from acute myeloid leukemia (AML) patients, focusing on exosome-related biomarkers 
to delineate their mechanistic involvement and therapeutic potential in AML pathogenesis. We curated 
two LSC gene expression datasets (GSE17054, GSE24395) from GEO, implementing rigorous 
normalization and batch effect correction using R-based bioinformatics pipelines (ComBat algorithm 
via sva package). Harmonized datasets underwent differential expression analysis through empirical 
Bayes moderated t-tests (limma package), cross-referenced with exosome-associated genes from 
GeneCards to identify AML-specific candidates. Subsequent DAVID functional annotation revealed 
critical enrichment in vesicle-mediated transport (FDR<0.05) and ferroptosis pathways (p=3.2×10⁻⁴). 
STRING database analysis coupled with network topology analysis in Cytoscape identified six hub 
genes (ANXA2, TNFRSF1A, THY1, CD63, IDH1, S100A11) exhibiting significant connectivity (degree 
centrality ≥8), including membrane trafficking regulators (ANXA2, CD63) and metabolic modulators 
(IDH1). These findings establish an exosome-related gene signature with therapeutic implications, 
particularly highlighting IDH1's dual role in 2-hydroxyglutarate metabolism and extracellular vesicle 
biogenesis. Our multi-omics integration strategy provides a novel framework for understanding AML 
pathogenesis through the exosome-LSC axis, serving as potential diagnostic biomarkers and 
therapeutic targets, ultimately advancing therapeutic development for AML. 
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1. Introduction 

Acute Myeloid Leukemia (AML) is a hematological malignancy characterized by the malignant 
cloning of myeloid hematopoietic stem cells. Its main pathological features include abnormal 
proliferation of bone marrow blasts, suppression of normal hematopoiesis, and extramedullary 
infiltration. AML is clinically characterized by high drug resistance and recurrence rates[1-2], with an 
increasing incidence rate among the elderly population year by year. Due to poor tolerance to 
chemotherapy and complex comorbidities in elderly patients, the treatment failure rate is as high as 
40%-50%, posing a significant burden on the healthcare system[3-4].  

The occurrence of AML involves multilevel regulatory networks such as epigenetic dysregulation, 
gene mutations (e.g., FLT3, NPM1, DNMT3A), and modulation of the myeloid microenvironment and 
immune escape[5-7]. Exosomes, originating from various cell types, play a crucial role in intercellular 
communication by participating in the functional transport of molecules such as proteins, nucleic acids, 
and lipids across spaces[8-10]. Recent studies have shown that exosomes play a key role in intercellular 
communication, particularly in the progression of AML, where leukemic stem cells (LSCs) promote 
myeloid differentiation arrest and immune escape through abnormal exosome secretion[11,12]. 
Exosome-related genes not only regulate the biosynthesis and secretion of exosomes (e.g., CD63, 
TSG101, MVB12A) but also participate in the remodeling of the tumor microenvironment[13-15]. LSCs 
transmit oncogenic proteins (e.g., FLT3-ITD mutants), miRNAs (e.g., miR-17-92 cluster), and 
signaling molecules (e.g., Wnt/β-catenin pathway ligands) via exosomes, accelerating leukemia 
progression[16-18] and inducing immune tolerance and treatment resistance[19-21].  

In this study, we conducted bioinformatics analysis to systematically dissect the expression profile 
characteristics of exosome-related genes in LSCs from AML patients, focusing on their dynamic 
regulatory networks in the pathogenesis of AML. By integrating multi-omics data, we aim to construct 
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a molecular network map mediated by AML-LSC-specific exosomes, providing a theoretical basis for 
exosome-based therapies targeting LSCs and individualized treatment strategies. With a deeper 
understanding of the pathological mechanisms of AML exosomes, targeted intervention of exosome 
secretion or receptor signaling pathways is expected to become a new strategy for improving patient 
prognosis and promoting the development of precision medicine.  

2. Materials and Methods 

2.1 Data Acquisition and Processing 

This study systematically retrieved transcriptome data from leukemia stem cells (LSCs) and normal 
hematopoietic stem cells (HSCs) of acute myeloid leukemia (AML) patients using RNA microarray 
technology from the Gene Expression Omnibus (GEO) database. Core experimental data, including 
platform description files, series matrix files, TPM files, and count files, were extracted using keywords 
such as ("acute myeloid leukemia" OR "AML") AND ("leukemia stem cell" OR "LSC") along with 
"microarray" and "human samples" as filtering criteria. Two independent cohorts were ultimately 
included: GSE17054 (Institute for Systems Biology, USA, with 9 LSCs vs. 4 HSCs, GPL570-55999) 
and GSE24395 (Kyushu University, Japan, with 12 LSCs vs. 5 HSCs, GPL6106-11578). Although 
some samples lacked age/gender information, they were still included to maximize the sample size, 
with missing variables controlled in subsequent analyses. 

2.2 Data Preprocessing for Differentially Expressed Genes (DEGs) 

To eliminate the impact of experimental batches and platform differences on the data, both datasets 
were standardized. The normalizeBetweenArrays function from the limma package was used to 
perform global scaling and shifting for each sample to ensure consistent data distribution. Subsequently, 
the avereps function was employed to average duplicate probes, reducing technical noise. The 
standardized data were then log2(counts + 1) transformed to stabilize variance and compress the data 
range, making it closer to a normal distribution and enhancing the robustness of subsequent statistical 
analyses. 

2.3 Batch Correction and Differential Analysis After Dataset Merging 

Gene identifiers (gene IDs) were extracted from each dataset, and common genes were retained to 
reduce noise across datasets. Batch correction was performed using the ComBat function from the sva 
package, estimating batch effects through an empirical Bayes framework. Subsequently, differential 
expression analysis was conducted using the DESeq function from the DESeq2 package, with P-values 
adjusted using the FDR method (adjusted P-value < 0.05) to control the false discovery rate. A 
threshold of |log2FC| ≥ 0.585 (corresponding to an original fold change ≥ 1.5) was set to balance 
sensitivity and specificity. 

2.4 Screening of Exosome-Related DEGs 

Cross-analysis was conducted between DEGs in the merged dataset and exosome-related genes in 
the Genecard database to identify AML-LSCs-specific DEGs. 

2.5 Enrichment Analysis 

GO (Gene Ontology) enrichment analysis, including biological processes (BP), cellular components 
(CC), and molecular functions (MF), as well as KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway analysis, were performed using the clusterProfiler R package. Additionally, Gene Set 
Enrichment Analysis (GSEA) was employed to identify gene sets significantly enriched or 
downregulated in specific biological processes. All analyses were conducted with a significance 
threshold of P < 0.05. 

2.6 Construction and Analysis of Protein-Protein Interaction (PPI) Networks and Core Gene 
Selection 

PPI networks were constructed based on the STRING database (confidence score ≥ 0.4) and 
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visualized using Cytoscape software (v3.10.1). The CytoHubba plugin was utilized to comprehensively 
screen core genes through ten different algorithms, ensuring the integrity and functionality of the 
network structure. 

2.7 Construction of Core Gene Protein Networks 

The selected core genes were input into the GENEMANIA platform, with "Homo sapiens" selected 
as the species, to automatically generate gene interaction networks. 

2.8 Statistical Methods, Software, and Tools 

All statistical analyses were conducted in the R environment. The Benjamini-Hochberg method was 
used for multiple testing correction to control the false discovery rate (FDR). R language (version 4.4.2) 
was employed for data processing and statistical analysis, while Cytoscape software (version 3.10.3) 
was used for plotting and screening core differential genes. 

3. Results 

3.1 Data Acquisition and Processing 

After preliminary handling, integration, and merging of the two datasets, GSE17054 and GSE24395, 
a gene expression matrix was successfully obtained. This includes: GSE17054 Dataset: Containing 
22,876 gene expression data points. GSE24395 Dataset: Containing 24,981 gene expression data 
points.   

3.2 Data Preprocessing for Differentially Expressed Genes 

Through processing, we obtained two normalized gene expression matrix files (Figure 1). 

 
Figure 1 Density Distribution of Normalized Gene Expression. 

(A) GSE17054 dataset; (B) GSE24395 dataset. X-axis: log2-transformed normalized expression 
values (normalized by limma method); Y-axis: Kernel density estimation values. Both datasets exhibit 
a right-skewed distribution, indicating that lowly expressed genes are predominant, which is consistent 
with the characteristics of RNA microarray technology. 

3.3 Batch Correction and Differential Analysis After Data Integration 

After integrating the normalized gene expression data from GSE17054 and GSE24395, we 
employed a batch correction method to eliminate batch effects between experiments. Subsequently, 
differential expression analysis was conducted, leading to the successful identification of 550 
differentially expressed genes and their expression levels (Figure 2). 

(A) PCA Analysis Before Correction: Principal Component 1 (PC1) and Principal Component 2 
(PC2) reveal a significant separation between GSE17054 (red) and GSE24395 (green) samples, 
indicating the presence of technical batch effects. (B) PCA Analysis After Correction: After ComBat 
correction, there is a significant increase in the overlap between the two groups of samples, suggesting 
that the technical batch effects have been effectively removed. (C) Heatmap: Hierarchical clustering 
based on Pearson correlation shows that the normal control samples are grouped under the top blue bar, 
while the disease samples are grouped under the purple bar. The second row displays different color 
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bars indicating different datasets. In the heatmap, red squares represent high expression, and blue 
squares represent low expression. Only the top 50 consistently differentially expressed genes with 
|log2FC| ≥ 0.585 and adj.P.Val < 0.05 across datasets are displayed. (D) Volcano Plot: A total of 550 
differentially expressed genes were identified. Genes marked in red are significantly up - regulated in 
both groups, while genes marked in blue are significantly down - regulated in both groups. Gray dots 
represent non - differentially expressed genes. 

 
Figure 2 Batch Effect Correction and Differential Analysis 

3.4 Screening of Exosome-Related Differentially Expressed Genes 

By performing a cross-analysis of the 550 differentially expressed genes with 878 exosome-related 
genes from the Genecard database, we successfully screened out 41 AML-LSCs exosome-specific 
differentially expressed genes (DEGs) (Figure 3). 

 
Figure 3 Venn Diagram of Exosome-Related Differential Genes in AML LSCs.  
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Red circle (DEG): 509 differentially expressed genes (36.7%) in leukemia stem cells.Blue circle 
(Exosome): 837 exosome-related genes (60.3%).Purple overlapping region: 41 co-occurring genes 
(3.0%) in both AML-LSCs and exosomes. 

3.5 Enrichment Analysis 

GO, KEGG, and GSEA enrichment analyses were conducted on the 41 exosome-related 
differentially expressed genes (DEGs), with a significance threshold of P < 0.05. Biological Processes 
(BP): These DEGs were enriched in the regulation of actin polymerization or depolymerization , 
regulation of actin filament length, and actin filament polymerization. Cellular Components (CC): They 
were predominantly localized to cytoplasmic vesicle lumens, secretory granule lumens, vesicle lumens, 
and focal adhesions. Molecular Functions (MF): Significant enrichment was observed in phospholipase 
inhibitor activity, cell-cell adhesion mediator activity, and cadherin binding, among other functions. 
KEGG Pathways: The DEGs were involved in pathways such as amino acid biosynthesis, endocytosis, 
and Salmonella infection. 

GSEA Analysis: The analysis revealed significant enrichment of gene sets in pathways related to 
oxidative phosphorylation, nuclear-cytoplasmic transport, and natural killer cell-mediated cytotoxicity 
(Figure 4). 

 
Figure 4 Gene Ontology (GO) and Pathway Enrichment Analysis Results, as well as GSEA Results. 

(A) GO Analysis: Biological Process (BP): Differentially expressed genes were significantly 
enriched in processes such as actin filament polymerization (the length of the bar graph indicates the 
number of genes, and the color intensity represents the adjusted p-value, with p.adjust < 0.05).Cellular 
Component (CC): Significant enrichment was observed in structures like secretory granule 
lumen.Molecular Function (MF): Involved activities such as phosphatidylinositol binding. (B) Pathway 
Enrichment Analysis: Significantly enriched pathways include Salmonella infection, amino acid 
biosynthesis, etc. (p.adjust < 0.05). The color coding of the bar graph is the same as above, reflecting 
the strength of significance. (C) GSEA Analysis: The running enrichment score curve displays the 
dynamic enrichment trend of gene sets (such as oxidative phosphorylation). 



Frontiers in Medical Science Research 
ISSN 2618-1584 Vol. 7, Issue 3: 126-133, DOI: 10.25236/FMSR.2025.070317 

Published by Francis Academic Press, UK 
-131- 

3.6 Construction and Analysis of Protein-Protein Interaction (PPI) Network and Screening of Core 
Genes 

Based on the AML exosome-related differentially expressed genes (DEGs), we constructed a PPI 
network . This network comprises 41 DEGs, forming 30 nodes and 60 edges, where nodes represent 
proteins encoded by DEGs and edges depict interactions between these proteins. Utilizing Cytoscape 
software (version 3.10.1), we constructed a differentially expressed PPI network based on these 
interaction results and analyzed it using 10 algorithms within the CytoHubba plugin. Ultimately, six 
core hub genes were screened out that met all criteria and had the highest scores: ANXA2, TNFRSF1A, 
THY1, CD63, IDH1, and S100A11 (Figure 5). 

 
Figure 5 (A) shows the protein-protein interaction (PPI) network diagram of exosome-related 

differentially expressed genes; (B) presents the PPI network diagram of differentially expressed genes, 
where red represents upregulated genes and green represents downregulated genes; (C) illustrates the 

hub genes that meet the requirements based on comprehensive evaluation using 10 algorithms. 

3.7 Construction of Protein Interactions Among Core Genes 

Analysis of the six core exosome-related DEGs on the GeneMANIA platform unveiled their crucial 
roles in various biological processes. The results indicated that these genes can directly participate in 
cell cycle regulation and also indirectly function through interactions with other genes. The primary 
biological processes involved include membrane microdomains, regulation of endocytosis, receptor 
catabolism, receptor-mediated endocytosis, positive regulation of endocytosis, phosphatidylinositol 
binding, and regulation of the I-kappaB kinase/NF-kappaB signaling pathway (Figure 6). 
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Figure 6 Core gene protein interaction network diagram, the different biological functions represented 

by node colors. 

4. Conclusion 

Acute myeloid leukemia (AML) is a malignant hematological disorder originating from 
hematopoietic stem cells in the bone marrow, characterized by abnormal differentiation and clonal 
proliferation of myeloid cells. The incidence of AML significantly increases with age, and multidrug 
resistance, leukemic stem cell (LSC) evasion, and immune microenvironment imbalance are the 
primary reasons for treatment failure. In recent years, exosomes have emerged as a research hotspot in 
AML due to their roles in intercellular signaling, regulation of the tumor microenvironment, and the 
development of drug resistance[22]. In this study, bioinformatics analysis was conducted to screen six 
exosome-related characteristic genes of LSCs, namely ANXA2, TNFRSF1A, THY1, CD63, IDH1, and 
S100A11. These findings revealed the crucial roles of these genes in the initiation and progression of 
AML, providing novel exosome-directed strategies for precision therapy. Furthermore, molecular 
docking techniques offer new insights into the development of targeted therapeutic drugs. 
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