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Abstract: China has actively developed a green economy and integrated the carbon emission trading 
market into its national strategic development. As a core part of the carbon trading market, the carbon 
trading price is crucial for improving the carbon emission rights market. Shanghai's carbon emission 
trading market is relatively mature, and studying the influencing factors of its carbon emission trading 
price is of great significance for the development of China's carbon market. This paper uses the VAR 
model to analyze the influencing factors of carbon emission trading prices in Shanghai. The results show 
that macroeconomic factors, energy price factors, and climate and environmental factors have 
significant impacts on the price. Macroeconomic and energy price factors have a negative impact on 
carbon prices, while the air quality index has a positive impact. 
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1. Introduction 

Since the first Industrial Revolution, global industry has developed rapidly, but this has been 
accompanied by severe environmental issues, particularly global warming caused by greenhouse gas 
emissions. To address climate change, the international community has successively adopted the United 
Nations Framework Convention on Climate Change and the Kyoto Protocol, proposing a mechanism for 
trading carbon emission rights. As a responsible major country, China actively promotes green 
development, proposes the "dual carbon" goal, and has established regional pilot carbon emission trading 
markets since 2013, ultimately launching a unified national carbon emission trading market in 2021. As 
the economic center of China, Shanghai's carbon emission trading market developed earlier and is 
relatively mature. Studying the influencing factors of Shanghai's carbon emission trading prices can not 
only provide a reference for pricing in the Shanghai carbon market but also offer theoretical support for 
the improvement of the national carbon market. This paper uses the VAR model to conduct an empirical 
analysis of Shanghai's carbon emission trading prices, aiming to reveal its impact mechanism and propose 
relevant policy recommendations. Enterprises incorporated into the trading system through market-based 
means buy and sell carbon emission quotas based on their own emission reduction costs, thereby 
promoting the upgrading of energy-saving, carbon reduction, and emission reduction technologies for 
enterprises, increasing the proportion of clean and renewable energy use, promoting green and clean 
production worldwide, and ultimately driving the achievement of "carbon peak" and "carbon neutrality," 
promoting green, healthy, and sustainable economic development. 

2. Literature Review 

The United Nations Framework Convention on Climate Change was adopted in 1992, and carbon 
emission trading gradually emerged. Kverndokk Snorre (1995) in the 1990s demonstrated the first 
principle of justice and political feasibility of tradable emission rights[1]. Xu et al. (1997) researched 
global carbon emissions from 1800 to 1900 and analyzed the five carbon-emitting regions with emissions 
and GDP data, and proposed a global carbon emission trading rights scheme based on population 
distribution, arguing that developing countries should receive more carbon emission rights, while 
developed countries should bear greater historical responsibility[2]. Since the 21st century, the study of 
carbon emissions trading has been refined to pricing, Christiansen et al. (2005) analyzed the EU carbon 
trading system, identifying key factors affecting prices[3]. Hao and Tian (2020) proposed a multi-
objective chaotic sine cosine algorithm for improving prediction validity in carbon trading[4]. Zhang and 
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Xu (2020) used GARCH models to study carbon price fluctuations and risk mechanisms in China[5]. 
Lovcha et al. (2020) applied the SVAR model to distinguish economic factors and market microstructure 
impacts on carbon prices[6]. Le and Azhgaliyeva (2023) found that carbon pricing policies significantly 
reduced greenhouse gas emissions, particularly in heavy industry sectors[7]. 

In terms of energy factors, Yin et al. (2019) found that energy and industrial indices indirectly 
positively impact carbon trading prices in China using the SVAR model[8]. Rohan B and Qiu YZ (2020) 
noted that high coal storage per capita negatively affects carbon prices[9]. Li et al. (2021) analyzed driver 
characteristics of EU carbon futures prices, revealing short-term sensitivity to oil and gas prices, with oil 
having the most significant impact post-Paris Agreement[10]. Yu et al. (2021) found coal price to be the 
most influential on Beijing's carbon trading prices using the VAR model[11]. Ji et al. (2021) studied 
China's carbon trading pilot, identifying positive correlations between oil and carbon prices, negative for 
coal, and varied impacts of non-ferrous metal prices on Beijing and Shenzhen[12]. These findings aid 
policymakers in setting reasonable carbon prices and promoting market health. 

In terms of climate factors, Roshan et al. (2019) studied the impact of climate environment on carbon 
emissions and their trading prices, and found that a warmer climate environment would cause a decline 
in greenhouse gas emissions, which had a significant impact on the trading price of carbon emission 
rights[13]. Ozturk et al. (2022) studies of the EU using new uncertainty indicators that capture transition 
and physical climate risks found that climate uncertainty is indeed an important driver of emission price 
fluctuations[14]. 

In terms of macroeconomic factors, John and Neda (2017) found positive correlations between 
industry and materials industry indices and carbon prices in Shenzhen and Guangdong[15]. Lin and Jia 
(2019) studied the impact of industry coverage, annual reduction factors, and free quota rates on China's 
carbon prices using a dynamic model[16]. Tan et al. (2020) analyzed the EU emissions trading system 
and found close connectivity between the carbon market and key financial markets, with weaker carbon-
oil finance ties[17]. Li et al. (2022) used LASSO and MSVAR models to identify key carbon market 
determinants, revealing that during COVID-19, energy factors had a long-term impact, economic factors 
a short-term impact, economic recession caused market volatility, and the stock market positively 
influenced the carbon market[18]. 

To sum up, carbon emission trading, as a market-based carbon reduction tool, plays an important role 
in reducing greenhouse gas emissions. Past studies have deeply explored the influencing factors of carbon 
emission right trading price from different perspectives, including energy factors, climate factors and 
macroeconomic factors. From the literature, there are few references for the systematic research on the 
price factors of carbon emission trading in Shanghai. In addition, most of the research data on the factors 
affecting the pilot carbon price stay at the beginning of the pilot construction, and its timeliness remains 
to be discussed. Therefore, based on the above factors and the latest research results of domestic and 
foreign literature, this paper selects the trading day data of China's carbon emissions in the past three 
years to explore the influence of macroeconomic factors, energy factors and climate factors on the trading 
price of carbon emission rights in Shanghai. 

3. Empirical Analysis 

3.1. Model Selection and Data Source 

In this paper, the VAR model is used to explore the relationship of Shanghai carbon emission trading 
price and its influencing factors. This paper selects four variables, namely Shanghai carbon emission 
right trading price SHEA (daily closing price), expressed by y, the source is Shanghai Environmental 
Energy Exchange; CSI 300 index CSI300, x1, data source is Shanghai Stock Exchange; power coal price 
CR, x2, data source is Wind database; Shanghai Air Quality Index AQI, x3, data source is Shanghai 
Environmental Testing Center. The data time span is selected from September 1,2022 to March 12,2024. 
Excluding the date without transactions, 381 trading days were collected. As the CSI 300 index, the 
macroeconomic index of the CSI 300 is used as the explanatory variable x1. Including the stock prices 
of all listed companies in Shanghai and Shenzhen, as a macroeconomic indicator can reflect the trend of 
the capital market and the money market, and can very well represent the macroeconomic development 
and prosperity of Shanghai. The energy price index selected in this paper is the power coal price in China, 
which is used as the explanatory variable x2. This mainly considers that domestic coal is still the main 
source of energy in Shanghai. The climate and environment index selected in this paper is the Shanghai 
Air Quality Index, which is used as the explanatory variable x3. Air quality index is considered to be the 
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most important effective index for environmental evaluation, and is the quantitative expression of clean 
air quality and air pollution, mainly including the detection of CO2, PM2.5, PM10, CO, O3 and other 
pollutants.. 

3.2. Unit Root Staionarity Test 

For VAR modeling, the original time series is first tested for stationarity. That is, according to 
compare the value of the t-statistic and the critical value, whether the original hypothesis of the unit root 
is rejected, that is, to judge whether the sequence is stable, the critical value at the 1% significance level 
is selected. If the t-statistic value is less than the percent threshold, the null hypothesis of unit root will 
be rejected, indicating that the sequence is stable, if not less than the white threshold, the unstable 
sequence. Or look at the p-value, if the p-value is lower than 0.05, if the result is below 0.05, the sequence 
can be stable, if the p-value is higher than 0.05, the sequence is not stable. Table 1 below shows the 
results of the ADF test. The first five lines in the table show the results of the stability test and the last 
five lines are the test after the first order difference. It can be seen that the t-statistic values of the variables 
x1 and x2 are greater than the 1% threshold and the p-values are greater than 0.05, therefore, they are all 
non-stationary sequences. Subsequently, the first order difference transformation of the raw data of y, x1, 
x2 and x3 sequences. It can be seen that the difference data reject the null hypothesis of unit root at the 
1% significance level, and the p-value is less than 0.05, that is, these variables are stationary sequences 
after the first order difference, and the next analysis can be carried out. 

Table 1: ADF Unit Root Test Results 

Variable t-statistic 1% critical value p Stability 
Y -7.566 -3.982 0 Steady 

X1 -0.638 -2.571 0.44 Unstable 
X2 -0.863 -2571 0.34 Unstable 
X3 -11.347 -3.982 0 Steady 

First-order difference variable t-statistic 1% critical value p Stability 
dY -11.812 -3.982 0 Steady 

dX1 -18.945 -3.982 0 Steady 
dX2 -11.265 -3.982 0 Steady 
dX3 -15.211 -3.982 0 Steady 

Data source: Eviews 10 experimental model 

3.3. Optimal Lag Order 

In this paper, we follow the principle that the p order of the AIC criterion is the same as the optimal 
lag order of the minimum lag order of the model. If the two principles are different, the optimal lag order 
under the multiple criterion in the operation result is taken as the optimal lag period of the model. From 
Table 2, we can find that the VAR model has different optimal lag order under the SIC criterion, so the 
lag 2 phase is chosen as the optimal lag order of the model in this paper. 

Table 2: Optimal Lag Order Determination for the VAR Model 

Lag LogL LR FPE AIC SC HQ 
0 1013.458 NA 2.50E-08 -5.355212 -5.313491 -5.338652 
1 3035.532 3990.513 1.33E-12 -15.99752 -15.78891 -15.91472 
2 3097.266 120.5212* 1.04E-12* -16.24014* -15.86465* -16.09110* 
3 3108.352 21.40634 1.07E-12 -16.21407 -15.67169 -15.99878 
4 3121.055 24.2617 1.09E-12 -16.19658 -15.48732 -15.91506 

Data source: Eviews 10 experimental model 

3.4. Jonhanson Co-integration Test 

To avoid the phenomenon of spurious regression caused by non-stationary time series, a co-
integration test is conducted on the variables. The optimal lag order for the VAR model system is 
determined to be 2. In the co-integration test, the selected lag order is the lagged terms of the first 
difference. Therefore, the lag order for the co-integration test is one less than the optimal lag order of the 
VAR model, which is 1. Consequently, a VEC model with a lag order of 1 is constructed, and the results 
are shown in Table 3 and Table 4. If the p-value is set at 0.05, there are two co-integrating relationships; 
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if the p-value is set at 0.1, all relationships are co-integrated. Thus, passing the co-integration test 
indicates that a VAR model can be established.  

Table 3: Trace statistic test 

Original assumption Eigenvalues Trace statistic 5% key value p 
0 0.236594 132.6274 47.85613 0.0000 
1 0.06748 30.31058 21.131620 0.0436 
2 0.006189 3.831933 14.264600 0.9166 
3 0.003895 1.478974 3.841466 0.2239 

Data source: Eviews 10 experimental model 

Table 4: Maximum Eigenvalue Test 

Original assumption Eigenvalues Maximum Eigenvalue Statistic 5% key value p 
0 0.236594 102.316800 27.584340 0.0000 
1 0.06748 26.478650 21.131620 0.0080 
2 0.006189 2.352959 14.264600 0.9802 
3 0.003895 1.478974 3.841466 0.2239 

Data source: Eviews 10 experimental model 

3.5. Model Stability Testing 

We employ the unit root test to examine the stability of the empirical model. If the reciprocal of the 
AR characteristic roots is less than 1 and falls within the unit circle, the model's stability is strong. If the 
reciprocal of the AR characteristic roots is greater than 1 and mostly lies outside the unit circle, the 
model's stability may be poor. The test results, as shown in Figure 1, indicate that apart from the unit 
roots assumed by the VAR model itself, all other characteristic roots are within the unit circle, and the 
majority of them are less than 0.5. Therefore, the VAR model constructed in this article is stable and has 
a certain degree of representativeness, allowing for further analysis of impulse response functions and 
variance decomposition. 

 
Figure 1: AR Eigenvalue test 

3.6. Pulse Response Analysis 

We use the impulse response function to analyze the response of the Y variable after applying a shock 
of one standard deviation to each of X1, X2, and X3, with the lag periods (in this article, one lag period 
equals one day). Figure 2 shows the paths of the impulse response values for the Shanghai carbon 
emissions trading price fluctuations caused by an external shock to the system, where the horizontal axis 
represents the number of observation periods and the vertical axis represents the impulse response values 
of the Beijing carbon emissions trading market price. This article selects a response observation period 
of 381, so after 381 periods, the impact of shocks on the carbon prices in all carbon markets for all 
explanatory variables tends to stabilize or continue to decline to zero. 



Academic Journal of Business & Management 
ISSN 2616-5902 Vol. 6, Issue 11: 7-13, DOI: 10.25236/AJBM.2024.061102 

Published by Francis Academic Press, UK 
-11- 

 
Figure 2: Pulse response graph of Y to Innovations 

The following Figure 3 explains the impulse response of the Shanghai carbon emission trading price 
fluctuations caused by shocks to X1, X2, and X3, respectively. From the perspective of macroeconomic 
factors, the CSI 300 Index shows a negative impact, which first increases and then decreases from period 
1 to period 150, and finally stabilizes around period 381. 

 
Figure 3: Pulse response graph of Y to X1 Innovation 

Figure 4 shows that, in terms of energy price factors, the price of coal in China is similar to the CSI 
300 Index, having a negative impact, with the greatest influence around period 25, and eventually tending 
to zero by period 381. 

 
Figure 4: Pulse response graph Y to X2 Innovation 

Figure 5 shows that, in terms of climate and environmental factors, the air quality index has a positive 
impact, reaching the maximum around the 10 period, and also tending to 0 after the 381 period. 
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Figure 5: Pulse response graph Y to X3 Innovation 

3.7. Variance Decomposition 

According to the analysis results shown in Figure 6, the fluctuation of carbon emission right trading 
price is mainly driven by its own factors, and is significantly influenced by historical data. However, with 
the increase of the number of periods, the influence of historical factors on the price fluctuations 
gradually weakened, and reached a relatively stable state after 300 periods. Nevertheless, historical 
factors are still the main influencing factors. On the other hand, the impact of the CSI 300 index, power 
coal prices and the Shanghai air quality index on carbon emission trading prices has all increased from 
scratch and gradually increased. Specifically, the impact of power coal price on the carbon price increased 
the most rapidly after 50 periods, and tended to stabilize after 300 periods, and its impact on the carbon 
price almost matched the fluctuation of the carbon price itself. This was followed by the impact of the 
CSI 300 index, while the impact of the Shanghai air quality index was relatively small. Eventually, all 
factors tend to have an equilibrium. 

 
Figure 6: Variance Decomposition 

4. Conclusions 

Through analysis using the VAR model, the study reveals the impact of macroeconomic factors, 
energy price factors, and climatic environmental factors on the price of Shanghai carbon emission rights. 
By conducting impulse response analysis and variance decomposition, it was found that the Shanghai 
and Shenzhen 300 Index and the price of thermal coal have a negative effect on the trading price of 
Shanghai carbon emission rights, while the Shanghai Air Quality Index has a positive effect on the trading 
price. Firstly, macroeconomic factors have a negative impact on the trading price of Shanghai carbon 
emission rights. In the impulse response analysis, the impact of the Shanghai and Shenzhen 300 Index 
shows a trend of first strengthening and then weakening from period 1 to period 150, reaching a stable 
state by period 381. Variance decomposition indicates that the impact of the Shanghai and Shenzhen 300 
Index on the changes in the trading price of Shanghai carbon emission rights is relatively small. Secondly, 
energy price factors also have a negative impact on the trading price of Shanghai carbon emission rights. 
In the impulse response analysis, the impact of the price of thermal coal reaches a peak around period 
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25, then gradually weakens, and approaches zero by period 381. Variance decomposition shows that the 
impact of the price of thermal coal on the changes in the trading price of Shanghai carbon emission rights 
is significant, comparable to the impact of its own shock. Lastly, the Shanghai Air Quality Index has a 
positive impact on the trading price of Shanghai carbon emission rights. In the impulse response analysis, 
the impact of the Shanghai Air Quality Index reaches its maximum around period 10, and then gradually 
weakens to zero after period 381. The results of variance decomposition indicate that the impact of the 
Shanghai Air Quality Index on the changes in the trading price of Shanghai carbon emission rights is the 
smallest. 
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