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Abstract: To address the challenge of determining chromosomal abnormalities in female fetuses, this 
study developed a scientific diagnostic model by comprehensively analyzing multiple factors—including 
Z-scores, GC content, read counts, relative proportions, and BMI—of the X chromosome and 
chromosomes 21, 18, and 13 in both pregnant women and fetuses, despite the absence of the Y 
chromosome as a reference. To resolve sample category imbalance, SMOTE oversampling technology 
was employed to expand the minority category to match the majority category in scale. Regarding 
modeling approaches, three distinct model systems were constructed: logistic regression, Probit 
regression, and adaptive norm robust probabilistic regression. Experimental results indicate that logistic 
regression performed best in detecting T13 abnormalities (76.0% accuracy, AUC=0.821); Probit 
regression demonstrated superiority in marginal effect interpretation (76.0% accuracy, AUC=0.739); 
while the adaptive norm robust model achieved a high accuracy of 87.5% in T13 anomaly detection. 
Feature importance analysis indicated that GC content played a dominant role in identifying all anomaly 
types. The findings validate the effectiveness and interpretability of the developed models, providing 
novel methodological support for non-invasive prenatal testing. 

Keywords: Female Fetal Chromosomal Abnormalities; SMOTE Oversampling; Logistic Regression; 
Probit Regression; Robust Probability Regression; GC Content 

1. Introduction 

T-chromosome aneuploidy (particularly trisomy of chromosomes 21, 18, and 13) is one of the 
primary genetic causes of fetal developmental disorders and perinatal mortality. Non-invasive prenatal 
testing (NIPT), which detects cell-free fetal DNA (cfdna) in maternal plasma, has become the primary 
clinical screening method for fetal chromosomal abnormalities [1-2]. Large-scale cohort studies in recent 
years have demonstrated that NIPT exhibits high sensitivity and specificity for detecting trisomy 21, 18, 
and 13. However, its positive predictive value remains influenced by factors such as maternal age, fetal 
fraction, and sequencing bias [3-4]. 

In sequencing data analysis, GC content bias is recognized as a major confounding factor affecting 
Z-score interpretation accuracy. Previous studies have significantly improved detection performance for 
T13 and T18 by incorporating GC correction and normalization methods [5]. For instance, the KF-NIPT 
algorithm combines GC bias correction with fetal fraction estimation to enhance the stability and 
sensitivity of aneuploidy detection [6]. Furthermore, multi-feature fusion models are gradually replacing 
single Z-score-based decisions. Logistic regression, Probit regression, and machine learning methods 
(such as support vector machines and deep learning models) demonstrate significant potential in feature 
integration and decision performance [7-9]. 

However, current research still faces several challenges. First, the limited number of aneuploidy-
abnormal samples leads to severe data imbalance, affecting model generalization. In recent years, studies 
employing oversampling methods like SMOTE have yielded positive outcomes in Down syndrome 
screening and risk classification [10-11]. Second, most research focuses on logistic regression or deep 
learning, while probabilistic regression models—known for their interpretability—remain underutilized 
in interpreting marginal effects and odds ratios (ORs). Recent advances in robust regression and adaptive 
regularization offer new avenues for enhancing model stability [12-14]. Finally, systematic analysis of 
feature importance remains inadequate. The contribution of factors such as GC content, number of read 
segments, ratio, and maternal BMI across different anomaly types requires further exploration [15]. 
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2. Materials and Method 

2.1 Data Collection 

To enhance the reliability of detection results, clinical practice often involves multiple blood draws 
and multiple tests for certain pregnant women, or a single blood draw with multiple tests. While this 
repeated testing strategy improves accuracy, it also introduces complexity in data processing, 
necessitating the establishment of scientific data integration methods. 

In scenarios with multiple blood draws and multiple tests, y chromosome concentrations at different 
testing time points may exhibit significant variations, reflecting dynamic changes in concentration during 
fetal development. For such data, we employ time series analysis methods. Linear or spline interpolation 
is used to estimate concentrations at specific time points, while leveraging information from multiple 
measurements to enhance estimation precision. When abnormal fluctuations occur in multiple test results, 
robust statistical methods (such as median or trimmed mean) are applied to mitigate the impact of outliers. 

In scenarios involving multiple tests from a single blood draw, repeated measurements primarily 
reflect technical reproducibility and measurement error. For multiple test results from the same blood 
sample, we integrate them using a weighted averaging method. Weights are determined based on the 
technical quality metrics of each test. Results with higher quality scores receive greater weight, while 
those with quality anomalies are automatically downweighted or excluded. This approach fully leverages 
the information from repeated measurements while ensuring the reliability of the final result. 

2.2 Methods 

2.2.1 Logistic Regression Classification Model 

Logistic regression is a classic statistical method for handling binary classification problems, 
particularly well-suited for medical diagnostic scenarios. This model maps linear combinations to the 
probability space via the sigmoid function, directly outputting anomaly probabilities to provide 
quantitative evidence for clinical decision-making. In determining chromosomal abnormalities in female 
fetuses, logistic regression effectively integrates multidimensional detection indicators to establish a 
mapping relationship from test data to anomaly probability. 

The logistic regression model assumes a linear relationship between the logit and the independent 
variables, an assumption that is generally reasonable in biomedical data. The model's core advantage lies 
in its output results having an intuitive probabilistic interpretation; regression coefficients can be converted 
into odds ratios (OR values), facilitating understanding and application by clinicians. 

The core of logistic regression is the logit transformation, which maps probabilities to the real number 
space, enabling linear modeling. 

logit(𝑝𝑝) = ln �
𝑝𝑝

1 − 𝑝𝑝
� = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑥𝑥𝑖𝑖 (1) 

Where, p denotes the probability of an anomaly, 𝛽𝛽0 represents the intercept term, 𝛽𝛽𝑖𝑖 is the regression 
coefficient for the i-th feature, and 𝛽𝛽𝑖𝑖 is the value of the i-th feature. 

The probability prediction formula for logistic regression is implemented via the sigmoid function, 
which transforms the linear prediction submodel into probability values within the [0,1] interval. 
Specifically, see the following equation: 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋) =
1

1 + exp �−(𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑘𝑘
𝑖𝑖=1 𝑥𝑥𝑖𝑖)�

(2) 

This formula ensures that predicted probabilities remain within valid ranges, avoiding the potential 
out-of-bounds probability issues that may arise in linear regression. 

Parameter estimation employs the maximum likelihood estimation method, determining optimal 
parameters by maximizing the joint probability density of the sample. The likelihood function is defined 
as follows: 
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𝐿𝐿(𝛽𝛽) = �𝑃𝑃
𝑛𝑛

𝑖𝑖=1

(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖 × (1 − 𝑃𝑃(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖))1−𝑦𝑦𝑖𝑖  (3) 

Where, 𝑦𝑦𝑖𝑖 denotes the true label of the i-th sample, and 𝑃𝑃(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) represents the anomaly probability 
predicted by the model. 

To prevent overfitting, L1 and L2 regularization terms are introduced to form the regularized objective 
function. Specifically, see the following equation: 

𝐽𝐽(𝛽𝛽) = −ln𝐿𝐿(𝛽𝛽) + 𝜆𝜆1 ∥ 𝛽𝛽 ∥1+ 𝜆𝜆2 ∥ 𝛽𝛽 ∥22 (4) 

Where 𝜆𝜆1 and 𝜆𝜆2 represent the L1 and L2 regularization coefficients, respectively, which control the 
model complexity. 

Building upon the logistic regression model, we further explore probabilistic modeling methods based 
on the assumption of a normal distribution. 

2.2.2 Probit Regression Decision Model 

Probit regression, based on the cumulative distribution function of the standard normal distribution, 
serves as a significant alternative to logistic regression. This model posits the existence of a latent 
continuous variable: when this variable exceeds a certain threshold, the observed binary outcome is 1; 
otherwise, it is 0. This assumption has a strong theoretical foundation in biomedicine, as the onset of many 
diseases can be understood as the result of latent risk factors accumulating to a critical threshold. 

The Probit model converges faster than logistic regression when handling extreme values, an 
advantage particularly useful for processing extreme Z-scores in chromosomal abnormality detection. The 
model's marginal effect calculations are more intuitive, directly reflecting how changes in independent 
variables influence the probability of abnormalities. In assessing chromosomal abnormalities in female 
fetuses, the Probit model better captures the gradual impact of continuous variables like Z-scores on 
abnormality determination. 

The core of the Probit model lies in mapping the linear predictor to probability via the cumulative 
distribution function of the standard normal distribution. The mathematical expression of the latent 
variable model is as follows: 

𝑌𝑌∗ = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑥𝑥𝑖𝑖 + 𝜀𝜀, 𝜀𝜀 ∼ 𝑁𝑁(0,1) (5) 

Where 𝑌𝑌∗ represents an unobservable latent variable, while 𝜀𝜀 denotes a random error term following 
a standard normal distribution. 

The relationship between the observed binary classification outcome and the latent variable is defined 
by a threshold model. Specifically, see the following equation: 

𝑌𝑌 = �1, if𝑌𝑌∗ > 0
0, if𝑌𝑌∗ ≤ 0 (6) 

This threshold mechanism aligns well with the biological mechanisms underlying chromosomal 
abnormality detection. 

The probability prediction formula of the Probit model employs the cumulative distribution function 
Φ(·) of the standard normal distribution. Specifically, see the following equation: 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋) = Φ�𝛽𝛽0 + �𝛽𝛽𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑥𝑥𝑖𝑖� (7) 

Where, Φ(·) denotes the cumulative distribution function of the standard normal distribution. 

The marginal effect formula of the Probit model reflects the direct impact of independent variable 
changes on the probability of an event occurring. Specifically, see the following equation: 

∂𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋)
∂𝑥𝑥𝑗𝑗

= 𝜙𝜙�𝛽𝛽0 + �𝛽𝛽𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑥𝑥𝑖𝑖� × 𝛽𝛽𝑗𝑗 (8) 

Where, Φ(·) denotes the probability density function of the standard normal distribution, which is 
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approximately equal to 0.3989 at the mean. 

To further enhance the model's robustness and adaptability, we developed an innovative regression 
method based on an adaptive mechanism. 

2.2.3 Adaptive Norm Robust Probabilistic Regression Model 

Adaptive Norm Robust Probabilistic Regression is an innovative method addressing the insufficient 
robustness of traditional regression models when confronted with noise and outliers. This model integrates 
three key technologies—adaptive norm regularization, adversarial training, and dynamic weight 
adjustment—to form an adversarial robust dynamic learning framework. In detecting chromosomal 
abnormalities in female fetuses, sequencing data may contain technical noise and biological variation, 
making traditional models susceptible to outlier interference. The adaptive robust model enhances stability 
while maintaining prediction accuracy. 

The model's core innovation lies in its dynamic adaptation mechanism, which adjusts regularization 
strength and feature weights in real-time based on data quality and model performance. This adaptive 
capability ensures stable performance across varying data quality levels. The adversarial training 
mechanism enhances the model's resilience against various disturbances encountered in practical 
applications by introducing artificial noise during training. 

Adaptive norm regularization balances model complexity and generalization capability by 
dynamically adjusting the weights of L1 and L2 norms. The weight adjustment formula is as follows: 

𝛼𝛼𝑡𝑡 = 𝛼𝛼0 ⋅ exp(−𝑡𝑡 ⋅ 𝜂𝜂), 𝜆𝜆𝑡𝑡 = (1 − 𝛼𝛼0) ⋅ (1 + 𝑡𝑡 ⋅ 𝜂𝜂 ⋅ 0.5) (9) 

Where 𝛼𝛼𝑡𝑡 and 𝜆𝜆𝑡𝑡 represent the L1 and L2 weights at iteration t, respectively. 𝛼𝛼0 denotes the initial 
adaptive learning rate, and η is the norm adaptation rate. 

The adversarial robust loss function combines the base loss, adversarial loss, and regularization loss to 
form a comprehensive optimization objective. Specifically, it is defined as follows: 

ℒ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝛽𝛽) = ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛽𝛽) + 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝛽𝛽) + 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝛽𝛽) (10) 

Where ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  represents the base negative log-likelihood loss, ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎denotes the adversarial 
loss, and 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 signifies the adaptive regularization term. 

The adversarial sample generation mechanism simulates the uncertainty present in real-world detection 
by adding Gaussian noise to the original features. The adversarial perturbation is defined as follows: 

𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑋𝑋 + 𝜖𝜖, 𝜖𝜖 ∼ 𝑁𝑁(0,𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎2 𝐼𝐼) (11) 

Where, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 denotes the adversarial perturbation strength, and 𝐼𝐼 represents the identity matrix. 

The adaptive probability prediction function incorporates a dynamic adjustment mechanism based on 
the standard Probit model. Specifically, it is expressed as follows: 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑌𝑌 = 1|𝑋𝑋) = Φ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝛽𝛽0 + �𝛽𝛽𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑥𝑥𝑖𝑖 ⋅ 𝑤𝑤𝑖𝑖(𝑡𝑡)� (12) 

Where, 𝑤𝑤𝑖𝑖(𝑡𝑡) denotes the dynamic weight of the i-th feature at iteration t, and Φ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 represents 
the adaptive cumulative normal distribution function. 

3. Results 

3.1 Model Comparison 

3.1.1 Logistic Regression Classification Model 

In the assessment of chromosomal abnormalities in female foetuses, the logistic regression model 
constructed a comprehensive classification framework by integrating data quality metrics—including Z-
scores, GC content, and read segment proportions—from chromosomes 13, 18, and 21, alongside 
maternal BMI characteristics. The model established independent binary classifiers for each of the three 
anomaly types (T13, T18, T21), generating probability predictions for each condition. 

The SMOTE oversampling technique addressed the scarcity of female foetal anomaly samples, 
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increasing the anomaly rates for T13, T18, and T21 from 3.8%, 7.6%, and 2.1% respectively to a balanced 
dataset, significantly enhancing the model's learning efficacy. The trained model's performance on the 
original test set yielded: T18: accuracy 76.0%, AUC 0.821; T21: accuracy 71.1%, AUC 0.633. 

The interpretability of the logistic regression model confers an advantage in female foetal anomaly 
detection, as each regression coefficient possesses clear biological significance, with odds ratios (OR) 
directly reflecting the impact of individual factors on anomaly risk. The predictive equation for T13 
abnormalities is: logit(P(T13 abnormality)) = -0.8281 - 0.2688×Z₁₃ - 0.1404×Z₁₈ + 0.1562×Z₂₁ - 0.1894 
× Z_X + 5.7276 × GC₁₃ - 1.7714 × GC₁₈ - 4.0981 × GC₂₁, wherein GC content on chromosome 13 exerts 
a decisive influence on T13 anomaly detection. In T18 and T21 detection, the Z-value coefficients for 
chromosomes 18 and 21 are 0.6300 and 0.8160 respectively, indicating their pivotal role in classification. 

In clinical application, the SMOTE technique successfully addressed the scarcity of abnormal 
samples. Training samples for T13, T18, and T21 were expanded from 18, 37, and 10 cases to 466, 447, 
and 474 cases respectively, achieving sample balance. Combined with the category weight balancing 
mechanism, the model effectively improved recall while maintaining high accuracy, providing reliable 
support for clinical screening. 

3.1.2 Probit Regression Decision Model 

Probit regression demonstrates favourable adaptability in determining chromosomal abnormalities in 
female foetuses, exhibiting particular theoretical advantages when handling continuous variables such as 
Z-scores. Based on the standard normal distribution assumption, it better captures the gradual changes 
inherent in anomaly detection. In practical application, the Probit model employs differentiated strategies 
for three anomalies: T13 relies on chromosome 13 Z-scores and GC content, T18 is primarily influenced 
by chromosome 18, while T21 necessitates comprehensive multi-chromosomal information. 

Following SMOTE sampling, the model demonstrates outstanding performance in handling class 
imbalance. Performance metrics are as follows: T13 accuracy 60.3%, AUC 0.610; T18 accuracy 76.0%, 
AUC 0.739; T21 accuracy 66.1%, AUC 0.641. While overall slightly inferior to logistic regression, Probit 
offers more intuitive marginal effect interpretation, providing clinicians with distinct probability 
frameworks. 

Marginal effect analysis revealed key clinical insights: - For T13, the effect of chromosome 21 GC 
content was -0.401, indicating a 40 percentage point reduction in abnormality probability per one standard 
deviation increase. The GC content effect for chromosome 18 in T18 was -0.766, demonstrating its strong 
discriminatory power. The Probit equation for T13 is: P(T13 abnormality) = Φ(-0.6885 - 0.1728×Z₁₃ - 
0.1103×Z₁₈ + 0.0715×Z₂₁ - 0.1334×Z_X + 5.1901×GC₁₃ - 2.3192×GC₁₈ - 2.9505×GC₂₁), highlighting GC 
content's influence. Equations for T18 and T21 similarly demonstrate these markers' dominant role. 

The Probit model, combined with SMOTE, effectively mitigates class imbalance. By leveraging the 
assumption of normal distribution, it more accurately characterises the distribution of Z-scores. Its 
marginal effects provide a scientific tool for clinical risk assessment and probabilistic diagnostic decision-
making. 

3.1.3 Adaptive Norm Robust Probabilistic Regression Model 

The adaptive norm robust probabilistic regression model demonstrates unique advantages in 
determining chromosomal abnormalities in female foetuses. Through its adaptive mechanism, the model 
dynamically adjusts feature weights according to different anomaly types, providing personalised 
assessment strategies for trisomy 13, trisomy 18, and trisomy 21. For T13 detection, the model identifies 
chromosome 13 Z-score (0.1061) and chromosome 21 GC content (0.1151) as key features; in T18 
detection, X chromosome Z-score (0.1294) becomes a critical factor; while T21 detection synthesises GC 
information across multiple chromosomes. 

The model's adversarial robustness design is optimised against technical noise and biological variation 
inherent in NIPT testing. Adversarial perturbations introduced during training ensure accuracy in noisy 
environments; a dynamic weighting mechanism adjusts feature importance based on data quality. Should 
certain indicators become anomalous, the model reduces their weighting, relying instead on more reliable 
indicators for determination. 

Following SMOTE sampling, the model demonstrates exceptional performance in handling extremely 
imbalanced datasets. The T13 anomaly equation is: P(T13) = Φ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒  (-0.1974 + 0.1061×Z₁₃ + 
0.0246×Z₁₈ - 0.0885×Z₂₁ + 0.0659×Z_X), where Φ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 denotes the cumulative distribution function 
of a normal distribution that dynamically adjusts based on data quality. The T18 equation P(T18) = 
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Φ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (-0.0780 - 0.1406×Z₁₃ + 0.0190×Z₁₈) exhibits a more balanced feature distribution. The T21 
equation also maintains stability under varying quality conditions. 

The model's innovation lies in combining adaptive and adversarial robustness. Through dynamic 
weighting and regularisation adjustments, it remains stable amidst sequencing noise and sample 
heterogeneity. Although differing from traditional methods on certain metrics, it achieves 87.5% accuracy 
in T13 classification and an AUC of 0.652 in T21 classification. This validates the adaptive mechanism's 
practical value, offering a novel pathway for complex clinical settings. 

3.2 Prediction results 

Table 1 Summary of Logistic Regression Model Performance 

Anomaly 
Type 

Sample 
Count 

Anomaly 
Sample Count 

Anomaly 
Rate 

Accuracy Precision Recall AUC 

T13 605 23 3.80% 0.711 0.083 0.600 0.734 
T18 605 46 7.60% 0.760 0.167 0.556 0.821 
T21 605 13 2.15% 0.711 0.029 0.333 0.633 

Table 1 shows significant differences in detection rates among the three chromosomal abnormalities, 
with T18 abnormalities exhibiting the highest rate (7.60%) and T21 abnormalities the lowest (2.15%). 
Regarding model performance, T18 anomaly detection demonstrated optimal results, achieving an 
accuracy of 76.0% and an AUC value of 0.821, indicating strong discriminatory capability. The recall rate 
for T13 anomaly detection reached 60.0%, enabling detection of most abnormal cases despite the scarcity 
of samples. For T21 anomalies, with extremely limited samples, the precision rate was only 2.9%, but the 
recall rate reached 33.3%, indicating the model possesses a certain detection capability. Overall, the 
SMOTE sampling technique effectively mitigated the class imbalance issue, providing technical support 
for anomaly detection. 

Table 2 Feature Importance Ranking (Top 5) 

Anomaly 
Type 

Ranking Feature Name Importance 
Score 

Coefficient 
Value 

Contribution 

T13 1 GC content of chromosome 13 0.415 5.728 41.47% 
T13 2 GC content of chromosome 21 0.297 -4.098 29.67% 
T18 1 GC content of chromosome 13 0.398 5.219 39.77% 
T18 2 GC content of chromosome 21 0.340 -4.456 33.96% 
T21 1 Z content of chromosome 21 0.502 0.816 50.20% 

Table 2 demonstrates that GC content metrics play a dominant role in identifying chromosomal 
abnormalities. Chromosome 13 GC content ranked first in both T13 and T18 anomaly detection, 
contributing 41.47% and 39.77% respectively, with coefficient values exceeding 5.0—indicating its strong 
discriminatory capability. Chromosome 21 GC content, as a significant negative indicator, ranked second 
in T13 and T18 anomaly detection. Its negative coefficient indicates that normal GC content aids in ruling 
out abnormalities. Notably, in T21 anomaly detection, the Z-score of chromosome 21 emerged as the most 
critical feature, contributing 50.20% to the prediction, demonstrating the central role of corresponding 
chromosome Z-scores in anomaly detection. This pattern of feature importance provides a prioritized 
ranking of key indicators for clinical testing. 

Table 3 Clinical Diagnostic Performance Evaluation 
Abnormal 
Type 

Sensitivity Specificity Positive Predictive 
Value 

Negative 
Predictive Value 

Positive 
Likelihood Ratio 

Clinical 
Value 

T13 0.600 0.716 0.083 0.976 2.11 mediocre 
T18 0.556 0.777 0.167 0.956 2.49 mediocre 
T21 0.333 0.720 0.029 0.977 1.19 mediocre 
Table 3 shows that the detection models for the three types of abnormalities exhibit limited 

performance on traditional diagnostic indicators. The sensitivity for detecting T13 abnormalities is 60.0%, 
capable of identifying 60% of abnormal cases, while specificity is 71.6%, indicating a relatively high false 
positive rate. Negative predictive values exceed 95% across all models, suggesting high reliability of 
negative results and aiding in ruling out abnormalities. Positive likelihood ratios ranged from 1.19 to 2.49, 
below the ideal diagnostic threshold (>5), indicating limited ability to confirm positive results. Overall 
clinical value was assessed as “poor,” primarily due to the scarcity of abnormal samples and category 
imbalance. This suggests the need for further model optimization or integration with other detection 
methods to enhance diagnostic accuracy. 
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Figure 1: Honeycomb Plot of Chromosome Z-Score Distribution Figure 2: AUC Performance 

Comparison of Three Models 

Figure 1 displays the two-dimensional density distribution of Z-scores for chromosomes 13 and 21 
in 605 female foetuses, analysed using a 25×25 hexagonal grid. Dark green regions indicate high-density 
areas. The majority of samples cluster within the normal range of Z-scores ±2, conforming to a normal 
distribution, while abnormal samples predominantly cluster at the peripheries of the four quadrants. 
Figure 2 demonstrates the discriminatory capabilities of different models across three anomaly categories. 
Green bars represent logistic regression, blue bars denote Probit regression, and purple bars indicate 
adaptive robust regression. Logistic regression performed best in T18 anomaly detection (AUC=0.821), 
Probit regression showed stable performance, while adaptive robust regression demonstrated superiority 
in T21 anomaly detection. All models achieved relatively high AUC values for T18 anomaly detection, 
whereas T13 and T21 exhibited lower AUC values due to sparse samples, providing quantitative grounds 
for model selection. 

 
Figure 3 Comparison of T13 Abnormal ROC Curves Figure 4 GC Content Distribution Analysis 

Figure 3 illustrates the discriminatory performance of the three models. Logistic regression (green, 
AUC=0.734) demonstrated the best performance, Probit regression (blue, AUC=0.610) showed moderate 
performance, while adaptive robust regression (purple, AUC=0.295) performed poorly. All models' ROC 
curves lie above the diagonal line, indicating discernible discriminatory power. Logistic regression 
demonstrates a marked advantage in T13 detection, potentially owing to its effective utilisation of 
features such as GC content, thereby providing a basis for model selection. Figure 4 illustrates GC content 
distributions across chromosomes 13, 18, and 21: chromosome 13 predominantly ranges from 0.40 to 
0.44, chromosome 18 from 0.42 to 0.46, and chromosome 21 from 0.38 to 0.42. The majority of samples 
fall within the normal range (40%–60%). GC variation across chromosomes serves as a critical quality 
control indicator. Abnormal GC levels often indicate sequencing issues that compromise detection 
reliability, hence their significant weighting within the model. 

The integrated application of three models establishes a multi-tiered technical framework for 
determining fetal chromosomal abnormalities: Logistic regression provides stable foundational detection 
capability, Probit regression supplements the theoretical framework based on normal distribution 
assumptions, and adaptive robust regression offers an innovative solution for anomaly detection in 
complex environments. Model results indicate that chromosomal anomaly detection requires integrating 
multiple assessment metrics. Relying solely on Z-scores fails to meet clinical accuracy requirements; 
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comprehensive evaluation incorporating data quality indicators such as GC content is essential. This 
modeling framework provides critical technical support and scientific basis for standardizing NIPT 
application and quality control in female fetuses. 

4. Conclusions 

This paper addresses the lack of Y chromosome reference signals in the process of determining 
chromosomal abnormalities in female fetuses by proposing a scientific modeling method based on multi-
feature fusion. By incorporating SMOTE oversampling technology, the method effectively mitigates the 
class imbalance caused by insufficient sample sizes for T13, T18, and T21 anomalies. At the modeling 
level, three distinct model frameworks—logistic regression, Probit regression, and adaptive norm robust 
probabilistic regression—were constructed and systematically compared for their diagnostic performance. 
Experimental results indicate: the logistic regression model performs best in detecting T18 abnormalities, 
Probit regression offers more intuitive marginal effect interpretation, while the adaptive norm robust 
model demonstrates significant advantages in detecting T13 abnormalities. Further feature importance 
analysis reveals that GC content plays a dominant role in identifying all types of abnormalities, while 
factors such as read length, proportion, and maternal BMI also exhibit certain discriminative power across 
different abnormality types. 

In summary, the multi-model comparative framework established in this study not only enhances the 
accuracy and robustness of female fetal chromosomal anomaly detection but also improves result 
interpretability, providing new methodological references for the clinical application of non-invasive 
prenatal testing. Future work may involve validation using larger-scale, multi-center datasets while 
exploring the integration of deep learning with probabilistic regression models to improve diagnostic 
capabilities in complex scenarios and provide more precise support for individualized pregnancy 
management. 
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