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Abstract: In this paper, a hybrid model CvBlock-SVR combining convolutional neural network (CNN) 
and support vector regression (SVR) is proposed for predicting the properties of magneto-thermal effect 
materials. The chemical composition descriptors are constructed by Magpie and the material features 
are augmented using a convolutional block (CvBlock), and the augmented features are subsequently 
modelled with SVR to accurately predict the transition temperature (Ttr) of the material. Training the 
pervasive CvBlock-SVR model on a dataset of all magneto-thermal effect materials achieved R² = 0.871 
and MAE = 24.937 K for Ttr prediction.The model was also successfully applied to the prediction of 
materials space such as Gd-Al, Gd-Co-Al, and Fe93-x-yZr7BxCuy, which verified its high accuracy and 
wide applicability. It is shown that the CvBlock-SVR model not only provides accurate prediction results, 
but also has wide applicability and is suitable to be applied to the prediction of the properties of different 
types of magneto-thermal effect materials. 
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1. Introduction 

Conventional vapor-compression refrigeration systems are inherently constrained by their bulky 
configurations, substantial weight, and suboptimal energy efficiency, coupled with the prevalent use of 
environmentally hazardous refrigerants that contribute to atmospheric degradation[1]. Among emerging 
alternative refrigeration technologies, magnetic refrigeration demonstrates significant promise. The 
performance of solid-state magnetocaloric materials is conventionally evaluated through the isothermal 
magnetic entropy change (ΔS), which quantifies the rate of order-disorder transition in magnetic moment 
systems[2]. The maximum magnetic entropy change (ΔSM) occurs during magnetic phase transitions, 
making the critical magnetic phase transition temperature (Ttr) a crucial operational parameter. In most 
magnetocaloric materials, particularly ferromagnetic systems, the Curie temperature (TC)—which marks 
the ferromagnetic-to-paramagnetic phase transition – serves as the critical transition temperature (Ttr). 
Magnetic refrigeration demonstrates operational versatility across distinct temperature ranges. Notably, 
within the cryogenic regime (20–120 K), it facilitates the efficient liquefaction of hydrogen, nitrogen, 
and helium[3], while in the near-ambient temperature range (270–320 K), emerging applications span 
domestic climate control and commercial food preservation. Despite the technology's first successful 
prototype demonstration four decades ago[4], it has yet to achieve widespread commercial 
implementation. A fundamental challenge stems from the current lack of commercially viable 
magnetocaloric materials[5]. This limitation is further compounded by the significant technical hurdles in 
engineering cost-effective, high-performance alternatives based on earth-abundant and non-toxic 
constituents[6]. Current material discovery predominantly relies on empirical trial-and-error approaches 
a time-intensive process requiring extensive domain expertise. Although high-throughput approaches 
such as first-principles calculations and thermodynamic models have been employed to predict 
magnetocaloric properties, these investigations remain highly complex, demanding detailed material 
specifications. Emerging machine learning (ML) techniques offer transformative potential for 
accelerating magnetocaloric material discovery. ML algorithms can autonomously extract meaningful 
patterns from experimental datasets, enabling data-driven decision-making for material design[7].  

2. Data sets and descriptors 

The magneto-thermal effect material dataset used in this study is extensively derived from the 
published literature[8]and includes 1606 magneto-thermal effect materials. This dataset covers the 
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material types summarised by V. Franco et al[2], including La(Fe, Si/Al)13, Heusler metals, Gd5(Si, Ge)4, 
manganites, amorphous materials and Laves phase compounds. A detailed analysis and visualisation of 
these magneto-thermal effect material data is presented in the next section. The magnetothermal effect 
materials collected in this study are mainly dominated by Mn, Fe, La and Co, and Gd. In the dataset, 729 
materials contain the element Mn; more than 500 materials contain the elements Fe or La; and the 
elements Gd and Co are also the main research elements in the field of magneto-thermal effect. As 
ferromagnetic elements, Mn, Fe, and Co are widely present in magnetothermal effect materials, and they 
play a crucial role in the ferromagnetic to paramagnetic phase transition during the magnetothermal effect. 
In particular, Gd, as the only lanthanide metal with a Curie temperature close to room temperature, drives 
the research and development of room-temperature magnetocooled materials. It is noteworthy that, in 
addition to these elements, the magnetothermal effect properties can be modulated by other ions in the 
periodic table, which provides a potentially very wide scope for chemical exploration in the design of 
new magnetothermal effect materials. 

 
Figure 1 Visualisation of Ttr and ∆SM distributions for magnetothermal effect materials. (a) Histogram 

of Ttr distribution; (b) Density plot of Ttr and ∆SM distribution; (c) Scatter plot of Ttr and ∆SM; (d) 
Histogram of ∆SM distribution 

Figure 1 illustrates the distribution of ∆SM and Ttr for the 1606 magnetothermally effected materials 
in this study.The distribution of Ttr spans the temperature range of 2.0-685 K, as shown in Figure 1(a). 
In the dataset, Tm39Ce16Co20Al25 and Tm39Pr16Co20Al25

[9] have the smallest Ttr values, both of which are 
2 K. FeCoNi0.5Cr0.5Al has a Ttr of 685 K [10], which is the largest Ttr value used in this study.  

Material data distribution imbalance is inevitable and has a significant impact on model performance. 
In the model training, this study will use the orthogonal distribution to handle the training data. In the 
dataset, the Ttr of the same magneto-thermal effect material is reported by different studies for multiple 
values, which vary to different degrees. This requires us to clean the data for better training of the model. 
Samples with Ttr values deviating by more than 50 K are also eliminated in this paper and the median is 
taken for the remaining samples with multiple Ttr values. Finally, 1576 materials were used for the Ttr 
prediction study. 

Digitisation of materials is the most important component of the machine learning paradigm. The 
experimental dataset used in this study covers a wide range of magneto-thermal effect material types, 
and therefore, the use of universal compositional features as material descriptors is the most appropriate 
choice. The advantage is that the properties of unknown magneto-thermal effect materials can be 
predicted based on chemical formulae alone[11]. However, due to the lack of other features such as 
structure, some isomers will no longer be considered in this study. In addition, the lack of structural 
information of the materials makes model training a great challenge and therefore more examples are 
needed to support the training of the models[12]. Therefore, this study did not focus on a single type of 
magneto-thermal effect material, but trained a generic performance prediction model using the entire 
dataset. In the prediction task of Ttr, component features were constructed using Magpie. 
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3. Modelling framework 

In this paper, CNN is used as a feature extractor for the magnetothermal effect material, and the 
extracted features are subsequently used as inputs to the SVR prediction model to predict the ∆SM and 
Ttr of the magnetothermal effect material, and the model framework is shown in Fig. 2. The model in the 
figure includes CvBlock and Fully Connected Network (FC) and SVR, and of course the embedding 
layer for input vector processing. FC exists to train the CvBlock, denoted as CvBlock-FC model. SVR 
exists to predict the Ttr of the material based on the CvBlock output, denoted as the CvBlock-SVR model. 
The framework of these main models is described in detail below. 

 
Fig. 2 Framework for predicting the properties of magneto-thermal effect materials. (a) CNN 

prediction of magneto-thermal properties, including embedding layer, three convolutional modules and 
three hidden layers of fully connected network; (b) convolutional modules, including 2D convolution, 
batch normalisation, ReLU activation function, and 2D max-pooling; (c) SVR prediction of magneto-

thermal properties, using the CNN output features as inputs to the model 

3.1 Embedding layer 

One-dimensional vectors cannot be directly input into CvBlock, they need to be transformed into 
two-dimensional shapes. The method of Nam C[13] is to reshape the descriptors into two-dimensional 
matrices as CNN inputs, but there are obvious shortcomings in this method. The basic principle of CNN 
is to update the current feature values by the values of the features and their surrounding neighbours, and 
if the one-dimensional descriptor vectors are directly reshaped into two-dimensional matrices, this is 
equivalent to artificially defining the neighbourhood relationship between features, which is inconsistent 
with the unknown nature of the relationship between features in physics. 

To solve this problem, an embedding layer is introduced in this paper. Through a learnable embedding 
layer, the 145-dimensional descriptor vectors are mapped to 256 dimensions and further reshaped into a 
16 × 16 2D matrix. This embedding layer is implemented by a linear transformation, i.e., and denote the 
input 145-dimensional vectors and the output 256-dimensional vectors, respectively, and and are both 
learnable parameters. The advantage of this method is that it avoids the need to artificially set the 
adjacencies between the features and makes it more suitable for the task of nonlinear prediction of the 
performance of the magneto-thermal effect by mapping the features to higher dimensions. 

3.2 Convolutional Block 

The output of the embedding layer is a 16 × 16 matrix representing a single channel with a size of 16 
× 16. Next, the feature matrix is processed through three CvBlocks. Each CvBlock consists of the 
following layers: a 2D convolutional layer (Conv2D), a batch normalisation layer (BatchNorm2D), a 
rectified linear unit function activation function layer (ReLU), and a 2D maximal pooling layer 
(MaxPool2D). 
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3.3 Fully Connected Neural Networks (FC) 

Fully-connected neural networks are only used for model training and are not involved in model 
prediction tasks. The output of the CvBlock module is the feature matrix, but these matrix features are 
not directly understandable, let alone defining a standard matrix labelling for training CvBlock networks. 
Therefore, in this paper, a fully connected layer is added after the CvBlock module in order to train the 
convolutional neural network efficiently. 

3.4 Support Vector Regression (SVR) 

In order to improve the prediction accuracy of the magneto-thermal properties, the fusion model 
CvBlock-SVR is proposed in this paper. the model adopts SVR to predict the properties of the magneto-
thermal effect materials based on the features extracted by CvBlock. 

4. Model training and performance 

In this paper, a convolutional neural network is used as a feature extraction tool for magneto-thermal 
effect materials and SVR is used to predict the Ttr of magneto-thermal effect materials based on this 
feature, the training and performance of the model is discussed below.  

4.1 Forecast of Ttr 

Prediction of Ttr for magneto-thermal effect materials using CvBlock-SVR. 

4.2 CvBlock training and results 

In the Ttr task of predicting magneto-thermal effect materials, in this paper, the dataset is divided into 
training and test sets in the ratio of 9:1, and the training set is further divided into training data and 
validation data in the ratio of 8:2. In the study, Mean Square Error (MSE) is used as the loss function and 
AdamW is used as the network parameter updating strategy, while the callback function 
ReduceLROnPlateau is used to dynamically adjust the learning rate. All experiments were implemented 
in Python environment based on Pytorch. 

  
Figure 3 Variation of (a) loss MSE and (b) R2 with the number of training rounds (epoch) for the 
training process of the CvBlock-FC model in the Ttr prediction task. The blue curve indicates the 
variation on the training set and the red curve indicates the variation on the validation set. (c) 

Predictive performance of the model on the training set; (d) Predictive performance of the model on 
the test set 
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CvBlock-FC was trained 150 times on the training set, and the changes in MSE and R2 are shown in 
Figure 3(a)(b). The convergence point of the model on the training data is R2 = 0.869 and MSE = 1551.01 
K as shown in Fig. 3(a); on the validation data, it converges to R2 = 0.769 and MSE = 2567.34 K as 
shown in Fig. 3(b). As can be seen from the figure, the improvement of the training process plateaus after 
100 sessions, at which point the model performance on the training and validation data is R2 = 0.867, 
MSE = 1581.80 K and R2 = 0.769, MSE = 2577.73 K. Given the limited space for subsequent 
optimisation, this study stops the training after 150 sessions and evaluates the model performance on the 
test set, which results were R2 = 0.747, MSE = 2647.81 K and MAE = 34.966 K. The test results of the 
model are visualised in Fig. 3(c)(d): Fig. 3(c) shows the performance on the training set, with the 
experimental values in the horizontal and the predicted values in the vertical coordinates; and Fig. 3(d) 
shows the performance on the test set. It can be seen that the model predicts most of the magneto-thermal 
effect materials Ttr in the 200-400 K interval more satisfactorily. 

 
Fig. 4 Spatial distribution of t-SNE features of magneto-thermal effect material descriptors with 

respect to Ttr. On the training set (a) 2D visualisation of t-SNE based on Magpie features and (b) t-SNE 
visualisation based on 1024-dimensional feature vectors output by CvBlock. On the test set (c) t-SNE 

visualisation based on Magpie features and (d) t-SNE visualisation based on 1024-dimensional feature 
vectors output by CvBlock. The colour bar indicates the size of the Ttr 

In order to further evaluate the descriptor processing capability of CvBlock, in this study, the initial 
Magpie features of the magneto-thermal effect material and the features after CvBlock processing are 
downscaled and visualised by t-SNE, respectively. Figures 4(a)(b) and 4(c)(d) show the visualisation 
results for the training and test sets. Figure 4(a) and Figure 4(b) show the distribution of the training set 
based on Magpie features and CvBlock features, respectively, where the colour shade of the scatter 
indicates the size of Ttr. As can be seen from the figures, the distribution of Magpie features is more 
chaotic, while CvBlock features are able to clearly distinguish materials with different Ttr values. 
Importantly, Figure 4(c)(d) shows the visualisation results of the test set, where the CvBlock features 
exhibit better differentiation compared to the Magpie features. This demonstrates the superiority of 
CvBlock in terms of feature extraction and generalisation capabilities. 

5. Conclusion 

In this study, a method CvBlock-SVR combining CNN and SVR is proposed for predicting the 
properties of magneto-thermal effect materials. The model achieves accurate prediction of the properties 
of magneto-thermal effect materials by using the chemical composition as a descriptor of the material, 
augmenting the descriptor using a convolutional block (CvBlock), and modelling the augmented feature 
vectors in combination with SVR. A generic CvBlock-SVR model was trained on all magneto-thermal 
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effect materials to predict the Ttr of the materials.The experimental results show that the model achieves 
an R² of 0.871 in Ttr prediction and an MAE of 24.937 K. These results fully demonstrate the excellent 
ability of the CvBlock-SVR model in capturing the performance characteristics of the materials, which 
significantly improves the prediction accuracy. 
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