
Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 3: 43-50, DOI: 10.25236/AJCIS.2025.080306 

Published by Francis Academic Press, UK 
-43- 

A Lightweight Hybrid Architecture for Speech 
Recognition 

Zhenzhou Liu1,a,#, Chengdong Weng1,b,#, Muyuan Liu1,c,#, Haoxing Xu1,d,#,   
Situo Xing1,e,#, Boyu Luan1,f,#  

1Beijing 21st Century School, Beijing, China 
a3508639204@qq.com, bjoe_wengbest368@163.com, cskycityliu@163.com, dffxx616@163.com, 
e2127681619@qq.com, f13301017188@163.com 
#Co-first author 

Abstract: This study proposes a lightweight hybrid architecture for speech recognition, integrating four 
convolutional layers with spectral normalization, two adaptive max-pooling layers, and two fully 
connected layers with dropout regularization. The design emphasizes computational efficiency through 
kernel pruning while maintaining consistent inference performance across hardware platforms. 
Evaluation using noisy speech datasets demonstrates robust recognition accuracy and real-time 
processing capabilities. Deployment validation confirms operational stability in edge computing 
environments, confirming suitability for resource-constrained applications requiring energy-efficient 
speech recognition. 
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1. Introduction 

Language is the fundamental tool for human communication and expression. In the 1950s, speech 
recognition technology began to emerge, with the development of the Audrey system by Bell Labs, which 
successfully recognized the digits from 0 to 9. This marks the inception of research in this field [1]. Since 
then, speech recognition technology has evolved continuously and had increasing applications. With the 
emergence of the digital age, speech recognition has played an increasingly important role in our daily 
lives. Within the contexts of the digital era, speech recognition technology now has become a key 
component of social life [2]. As a crucial branch of natural language processing, speech recognition 
technology has showed a significant potent across various domains, including human-computer 
interaction, the development of intelligent assistants, and speech translation. The accuracy and 
intelligence of speech recognition technology will continue to improve with developments in deep 
learning and big data. Furthermore, with progress in hardware devices, speech recognition will become 
more and more efficient, enabling its application in real scenarios. These technological advancements 
not only drive progress in artificial intelligence, but also provide technical support for innovation and 
transformation in related industries. 

Currently, several classic large-scale language models, such as BERT (containing 110 million to 340 
million parameters), GPT-3 (with 175 billion parameters), and T5 (containing 11 billion parameters), 
have made significant progress in natural language processing. These models possess abilities in transfer 
learning, few-shot learning, and zero-shot learning, and exhibit exceptional contextual understanding and 
reasoning abilities [3]. Liu Yang et al. proposed a speech recognition system based on a one-dimensional 
convolutional neural network (1D-CNN). The authors thoroughly analyzed the system's framework 
design and its advantages in speech processing, providing detailed insights into the implementation of 
the system using TensorFlow, including model construction, training processes, and optimization 
strategies. Experimental results showed that the system demonstrated high recognition accuracy and 
stability in both noise-free and mildly noisy environments, and it maintained strong robustness in 
severely noisy conditions [4]. A neural speech recognition system called Listen, Attend and Spell (LAS) 
was proposed, which directly transcribes speech into characters, avoiding the use of traditional phoneme 
models, hidden Markov models (HMM), and other components commonly employed in conventional 
speech recognition systems. In LAS, the neural network architecture integrates the acoustic model, 
pronunciation model, and language model, making it an end-to-end trained system with the 
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characteristics of an end-to-end model. Unlike DNN-HMM, CTC, and most other models, LAS does not 
make independence assumptions about the probability distribution of the output character sequence when 
processing acoustic sequences. Experimental results show that, in the Google Voice Search task, LAS 
achieved a word error rate (WER) of 14.1% without using a dictionary or external language model. When 
a language model was used for rescoring and beam search was applied to the top 32 hypotheses, WER 
decreased to 10.3%. In comparison, the state-of-the-art CLDNN-HMM model achieved a WER of 8.0% 
on the same dataset [5]. Kuniaki Noda proposed an audiovisual speech recognition (AVSR) system based 
on the connectionist hidden Markov model (HMM), which combines deep denoising autoencoders to 
extract audio features, convolutional neural networks to extract visual features, and a multi-stream HMM 
to integrate both in order to enhance recognition performance. Experimental results showed that, at a 10 
dB signal-to-noise ratio, the denoised MFCC improved recognition accuracy by approximately 65%, 
while combining visual features further enhanced performance when the signal-to-noise ratio fell below 
10 dB [6]. In modern speech recognition, existing deep learning models often face challenges related to 
excessively large model parameters, high computational resource requirements, and excessive energy 
consumption. Therefore, designing a speech recognition model that is parameter-efficient, 
computationally efficient, and energy-efficient has become a critical challenge for the advancement of 
speech recognition technology [7]. 

To address this issue, this study proposes a model architecture that combines Convolutional Neural 
Networks (CNN) [8] and Fully Connected Neural Networks (FCN) [9]. This model consists of four 
convolutional layers, two pooling layers [10], and two fully connected layers. The purpose of the design 
is to effectively reduce the number of model parameters, decrease computational complexity and energy 
consumption, and ultimately improve the efficiency and practicality of speech recognition tasks. 

2. System design 

2.1. Overall design 

 
Figure 1: The Arrangement of Neural Network Layers 

By the combination of different types of neural network layers and the integration of four optimization 
algorithms, this model effectively improves the accuracy of speech recognition (Figure 1). The 
convolutional layer, pooling layer, and fully connected layer are organized in the sequence of "two 
convolutional + pooling layers," "two convolutional + pooling layers," and "two fully connected layers." 

2.1.1. Convolutional Neural Network Layer 

In Convolutional Neural Networks (CNNs), which consist of convolutional layers, pooling layers, 
and fully connected layers, convolutional layer is the core component, which is responsible for extracting 
local features from the input audio signal. In that layer, the feature matrix is multiplied by the convolution 
kernel, and the sum is calculated and a feature map that reflects the characteristics of the data in the 
region is generated. Convolution operations feature weight sharing, meaning that the same convolution 
kernel applies the same parameters across different regions, which not only reduces the model's 
parameter count and computational complexity but also enhances the model's generalization ability [12]. 
Key factors in the convolutional layer include stride and padding. Stride means the step size of the 
convolutional kernel, while padding affects the spatial dimensions of the output feature map. 

2.1.2. Pooling Layer 

The next step after the convolutional layer is the pooling layer, which is responsible for sampling the 
output of the convolutional layer. The pooling layer helps decrease computational and storage demands 
through reducing the spatial size of the feature map, when it is preserving important features [13]. The 
primary pooling methods include max pooling and average pooling. The most commonly used pooling 
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method is max pooling, which selects the maximum value in a region to retain prominent features, which 
leads to stronger robustness against minor distortions and noise. In contrast, average pooling compresses 
features by averaging all values within the region, which tends to preserve audio features less effectively. 
Therefore, this model utilizes max pooling. Pooling not only helps reduce computational burdens but 
also effectively prevents overfitting, avoiding a decrease in test accuracy due to excessive fitting of the 
training data. 

2.1.3. Fully Connected Layer 

The fully connected layer is responsible for mapping the features extracted by the convolutional and 
pooling layers to the final output. In the fully connected layer, each neuron is connected to every neuron 
in the previous layer, but neurons within the same layer are not interconnected. Through these neurons, 
the model integrates local features and forms a global understanding [12]. A notable characteristic of the 
fully connected layer is the large number of parameters it contains, which results in higher computational 
and storage demands. Therefore, the fully connected layer is typically combined with optimization 
methods such as dropout and L2 regularization to reduce overfitting and improve generalization. Dropout 
effectively prevents overfitting, while L2 regularization smooths the weights, preventing the model from 
overly depending on noise in the training data. 

2.1.4. System Process 

The input layer of the model consists of 50 single-channel 32x32 images, which are processed by two 
layers of 3x3 convolutional kernels using the ReLU activation function. After this, the feature map size 
is reduced through max pooling. Subsequently, convolutional operations are performed in the third and 
fourth layers, with ReLU activation functions applied for feature extraction and further pooling. The final 
output consists of a feature map of size 8x8 with 32 input channels. The first layer contains 128 output 
nodes and uses the ReLU activation function. The second layer contains 10 neurons corresponding to the 
ten classification categories, with no activation function applied. Overall, the model uses an optimization 
strategy that combines learning rate decay and the Adam optimizer. Learning rate decay gradually 
reduces the learning rate during the training process, allowing the model to fine-tune the weights in the 
later stages of training, avoiding excessive oscillation and overfitting. The Adam optimizer adjusts the 
learning rate for each parameter based on the gradient, making the training process more efficient and 
enabling rapid convergence on complex loss functions, reducing the model’s sensitivity to 
hyperparameters. 

2.2. Model Optimization 

In this project, to prevent model overfitting, we adopted three strategies: regularization, Dropout, and 
the Adam optimizer. Below is a detailed explanation of these optimization methods: 

2.2.1. Regularization 

Regularization is generally divided into L1 and L2 regularization. Models using L1 regularization are 
called lasso regression, and those using L2 regularization are referred to as ridge regression, which helps 
achieve feature sparsity [13]. This characteristic makes L1 regularization particularly suitable for feature 
selection. 

L1 Loss Function, also known as Least Absolute Deviation (LAD), is defined by the following 
formula: 

∑ |𝑦𝑦𝑖𝑖 − ℎ(𝑥𝑥𝑖𝑖)|𝑛𝑛
𝑖𝑖=0                            (1) 

S represents the sum, yi is the value of the i-th sample, and h(xi) is the model output. The optimization 
objective is to minimize the difference between these values, indicating better model accuracy [13]. 

L2 Loss Function, also referred to as Least Squares Error (LES), is represented by the formula below: 

∑ �𝑦𝑦𝑖𝑖 − ℎ(𝑥𝑥𝑖𝑖)�𝑛𝑛
𝑖𝑖=0

2                            (2) 

The L2 loss minimizes the squared differences between the predicted and actual values, effectively 
constraining parameter magnitudes to ensure smoother weight distributions. This reduces over-reliance 
on specific features and prevents overfitting [13]. 

2.2.2. Dropout 

Dropout is a regularization technique commonly used during neural network training. Its core idea is 
to randomly set a portion of neuron outputs to zero during each forward pass. This random masking 
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mechanism prevents the network from relying too heavily on particular neurons, thereby enhancing 
model robustness. By suppressing unnecessary neuron co-adaptations, Dropout helps the model learn 
more generalized feature representations, ultimately improving performance on unseen data[14]. 

2.2.3. Adam Optimizer 

The Adam (Adaptive Moment Estimation) optimizer is an adaptive learning rate optimization 
algorithm that combines the advantages of momentum and RMS Prop. It can efficiently optimize non-
stationary objective functions and is relatively insensitive to hyperparameter settings, making it widely 
used in deep learning model training[15]. 

1) Basic Concept of Adam 

Adam dynamically adjusts the learning rate for each parameter through first-order moment estimation 
(mean of gradients) and second-order moment estimation (mean of squared gradients), thus enhancing 
optimization stability and convergence speed. 

Momentum Optimization: Applies exponential moving averages to gradients, stabilizing parameter 
updates and reducing gradient oscillations. 

RMS Prop: Uses exponential moving averages of squared gradients to adaptively adjust learning rates, 
preventing excessively large or small updates[15]. 

2) Mathematical Formulation of Adam 

Given the gradient gt computed at training step t, Adam updates parameters as follows: 

First-order moment estimation (momentum): 

mt=β1mt−1+(1−β1)g                           (3) 

Where mt is the exponentially weighted average of gradients, and β1 (typically 0.9) is the momentum 
decay rate. 

Second-order moment estimation (squared gradients): 

vt=β2vt−1+(1−β2)gt2                          (4) 

Where vt is the exponentially weighted average of squared gradients, and β2 (typically 0.999) is the 
RMS Prop decay rate. 

Bias Correction: 

To address bias in the initial estimates of mt and vt, perform bias correction: 

mt= mt/(1-βt
1), vt= vt/(1-βt

2)                   (5) 

Parameter Update: 

𝜃𝜃𝑡𝑡=𝜃𝜃𝑡𝑡−1-α/�𝑣𝑣𝑡𝑡+ϵ                          (6) 

Where α is the learning rate, and ϵ (typically 10⁻⁸) prevents division by zero[15]. 

3. Data Processing 

3.1. Structure of Audio Data and Dataset Division 

3.1.1. Data Structure 

The raw data consists of 10 folders, each representing a digit from 0 to 9, with each folder containing 
150 audio files. This structure provides a clear framework for the organization and management of data, 
facilitating subsequent processing and analysis. 

3.1.2. Dataset Division 

In the entire audio dataset, we adopted a specific division method. Four-fifths of the audio files are 
allocated to the training set, totaling 10×150×4/5 = 1200 audio files. This training set is crucial as it 
provides rich material for the model's training, allowing the model to learn various feature patterns within 
the audio data. The remaining one-fifth, that is, 10×150×1/5 = 300 audio files, is designated as the testing 
set. The testing set is primarily used to evaluate the model's performance; testing on this portion of data 
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that was not involved in training allows for an accurate measurement of the model's generalization ability 
and accuracy. 

3.2. Original data processing 

The following is a detailed description of the data processing flow in Figure 2: 

 
Figure 2: Data Processing Flow 

3.2.1. Traversing Raw Data 

Utilizing an object-oriented high-level programming language to traverse the entire raw data. This 
language has high flexibility and operability, effectively handling complex data structures. During the 
traversal, subsequent operations are performed on each audio file. 

3.2.2. Audio Feature Extraction 

(1) Application of the MFCC Method 

Using the MFCC (Mel-Frequency Cepstral Coefficients) method to obtain the features of each audio 
file. MFCC is a widely used feature extraction method in the audio processing field, effectively capturing 
the spectral characteristics of audio signals. By converting the audio signal to the Mel frequency scale 
and then performing a discrete cosine transform, the resulting coefficients can reflect the essential 
characteristics of the audio, similar to generating a unique "fingerprint" for each audio file. 

(2) Standardization of Feature Format 

The extracted MFCC features are standardized to a format of 64×16. This step helps standardize the 
features of different audio files, facilitating subsequent data operations and model input. In cases where 
the features of different audio files may vary, standardizing the format ensures consistency in the data 
during the subsequent processing. 

(3) Reshaping 

Using the reshape method to change the shape of the MFCC to 32×32×1. This operation adjusts the 
data structure to better meet the input requirements of specific models or algorithms. For example, in 
certain deep learning models, there are specific requirements for the shape of input data. Through this 
reshaping, the audio feature data can better fit the model structure, thereby improving the model's 
performance. 

3.2.3. Data Packaging 

The processed data and corresponding labels are packaged and output as .mat files. The .MAT file is 
a commonly used data storage format, widely applied in data mining, machine learning, and other fields. 
This format can effectively preserve data and label information, facilitating subsequent research and 
analysis. For instance, during model training and evaluation, data and labels can be directly read from 
the .mat files, reducing the time and complexity of data preprocessing. 

3.3. Experiment 

The dataset consists of many recordings of digits 0 to 9 by different speakers, and the dataset is 
relatively small. Mel Frequency Cepstral Coefficients features are extracted through data processing. 
Then, the load program loads and preprocesses the training and testing data from two processed 
MATLAB files. By using a one-hot encoding function, the labels for digits 0-9 are transformed into one-
hot encoded vectors, enabling the model to distinguish between the digits in vector form better. One-hot 
encoding converts categorical labels into vector form, as shown in Table 1 below. 
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Table 1. One-Hot Encoding Corresponding to Class Labels 

Class Label One-Hot Encoded Vector 
0 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
1 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 
2 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 
3 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] 
4 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 
5 [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 
6 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] 
7 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] 
8 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 
9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

To further enhance the training efficiency and accuracy of the model, the load program normalizes 
the data. Normalization scales the data to a range between 0 and 1, and it ensures a uniform training scale 
for all data, which prevents training deviations due to large disparities among data points. The 
TensorFlow framework is then used to construct a Convolutional Neural Network model, which is trained 
using the processed data. 

After training, model accuracy on the test data is evaluated and printed out, and adjustments are made 
to the dropout rate, iteration steps, decay rate, base learning rate, and train batch size. Adjusting the 
dropout rate enhances the model's generalization ability and allows it to learn the general characteristics 
of digits. Modifying iteration steps enables models to have a sufficient learning time to improve accuracy. 
Altering the base learning rate facilitates rapid convergence to an optimal solution and also maintains the 
stability and efficiency. Adjusting the decay rate ensures stability and optimizes model performance. 
Changing the train batch size affects the number of training samples per iteration, and it combined with 
iteration steps can accelerate and refine the training process. Notably, the dropout rate and iteration steps 
impact model training significantly and are the primary parameters for adjustment. 

Table 2. Training and Testing Data Results 

Dropout 
Rate 

Base Learning 
Rate Decay Rate Iteration Steps Train Batch 

Size Accuracy (%) 

0.96 0.001 0.9 500 50 84% 
0.9 0.001 0.99 500 50 86.90% 
0.9 0.003 0.5 500 50 90.50% 
0.9 0.001 0.9 1000 50 83.64% 
0.9 0.001 0.9 1000 50 83.64% 

0.999 0.003 0.5 1000 50 86.20% 
0.92 0.001 0.99 1000 50 87.20% 
0.88 0.001 0.99 1000 50 88% 
0.9 0.001 0.99 1000 50 88% 

0.96 0.001 0.99 1000 50 88% 
0.9992 0.001 0.99 2000 50 86.20% 

0.9 0.003 0.999 150 10 94% 
During model optimization, the highest average test accuracy was achieved with the following 

parameters: dropout rate of 0.9, iteration steps of 150, base learning rate of 0.003, decay rate of 0.999, 
and train batch size of 10. This configuration includes a high dropout rate to prevent overfitting, which 
is usually beneficial with small datasets. Setting the iteration steps to 150 allows the model to learn data 
features adequately while avoiding overfitting, thus improving test accuracy. A lower base learning rate 
reduces gradient oscillation and maintains accuracy, while a slower learning rate decay preserves 
accuracy and enhances model generalization. A training batch size of 10 improves generalization and 
adaptability, and its associated gradient fluctuations are mitigated by the low learning rate decay (Shown 
in Table 2). 

During model training, the relationship between mini-batch loss and mini-batch accuracy is recorded 
and plotted as the Training Loss Curve, shown in Figure 3. The orange line represents the ratio of mini-
batch loss to iteration steps. The trend of the orange line indicates high loss in the initial iterations, 
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followed by a significant decrease as training progresses. The overall trend suggests that the model is 
progressively optimized through iterations, achieving better data fitting. 

 
Figure 3. Training Progress Curves 

4. Conclusion 

In this study, we have proposed a concise and efficient deep learning network architecture designed 
to address the trade-off between accuracy and efficiency in speech recognition tasks under low-power 
and low-parameter conditions. Through structural optimization, this network achieves high speech 
recognition accuracy while maintaining a relatively small model size. To further enhance the performance 
of the model, we plan to carry out a series of extensions and tests in future research. Specifically, we aim 
to expand the existing speech recognition dataset by incorporating a broader range of diverse speech 
samples, including variations in noise, accents, and speaking rates, in order to improve the model's 
generalization ability and robustness in real-world applications. We believe that with further optimization, 
the deep learning network will continue to provide efficient and accurate speech recognition services 
under low-power and low-parameter conditions, effectively addressing the challenges posed by different 
speech environments. 
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