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Abstract: The results indicate that there is a significant spatial effect on carbon emission intensity 
between regions in China; Economic level, population density, and foreign investment intensity have a 
positive spatial direct effect on carbon emission intensity, while industrial structure, energy structure, 
scientific research investment, and urbanization level have a negative spatial direct effect on carbon 
emission intensity. The economic level, industrial structure, energy structure, and urbanization level 
have a negative spatial spillover effect on carbon emission intensity, while population density has a 
positive spatial spillover effect on carbon emission intensity. The spatial spillover effect of scientific 
research investment and foreign investment intensity on carbon emission intensity is not significant. 
Economic growth, industrial structure, and urbanization level are important factors that affect the 
intensity of carbon emissions. 
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1. Introduction 

Climate change is a major challenge facing humanity today, and addressing it has become a global 
consensus. Since the implementation of the reform and opening up policy, while China's economy has 
flourished, it has also brought serious negative impacts on the environment. China has become the second 
largest economy in the world, but it is also the world's largest energy consumer and carbon emitting 
country, accounting for about one-third of the global total carbon emissions. Therefore, it faces enormous 
pressure to reduce emissions internationally. In this context, China proposed at the 75th United Nations 
General Assembly in 2020 the goal of striving to achieve peak carbon emissions by 2030 and striving to 
achieve carbon neutrality by 2060. Carbon emission intensity is an indicator used to measure the 
relationship between economic activities and carbon dioxide emissions in a country or region, and is also 
an important indicator for evaluating carbon reduction efforts. Low carbon emission intensity means that 
economic activities generate less carbon dioxide emissions. On the contrary, high carbon emission 
intensity means that the creation of the same wealth requires more energy consumption, which is not 
conducive to sustainable development. Energy conservation and emission reduction policies based on 
carbon emission intensity can help promote China's economic transformation and form a mechanism for 
long-term effects. [1-4]. 

This article explores the regional differences in carbon emission intensity caused by the imbalance in 
regional economic development and energy utilization in China. At the same time, considering the 
geographical relationship between different regions in China, there are geographical connections 
between neighboring regions, which promotes the connection between regional economies and results in 
significant spatial effects. Based on this background, this study provides a reference for measuring the 
level of green and low-carbon development in different regions by analyzing the spatial effects of carbon 
emission intensity in China. 

2. Literature Review 

The significant increase in total carbon emissions leads to environmental problems, posing many risks 
to human health and socio-economic development [5,6,7]. Because how to reduce total carbon emissions 
has become a focus of research for scholars both domestically and internationally, with the development 
of econometrics, scholars have begun to use spatial econometric models to analyze the influencing factors 
of changes in total carbon emissions, per capita carbon emissions, and carbon emission intensity [8,9]. 
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Among them, the research on carbon emission intensity is the most extensive. By constructing a spatial 
econometric model of carbon emission intensity, it was found that the gradient distribution of carbon 
emission intensity in China has a strengthening effect on the spatial agglomeration of carbon emission 
intensity between regions [10,11]. Further adopting the theories and methods of spatial econometrics, the 
evolution mechanism of the spatiotemporal pattern of carbon emission reduction in China's provinces 
was revealed. 

Research results on factors affecting carbon emission intensity: Yu Yihua et al. found a "N" shaped 
relationship between economic development level and carbon emission intensity using the generalized 
least squares panel model, while industrial structure has a significant positive impact on carbon emission 
intensity [12]. Yao Yi et al. used provincial panel data and dynamic panel models to study and found that 
foreign direct investment technology spillovers effectively reduced China's carbon emission intensity 
[13]. Fu Yunpeng et al. studied the influencing factors of carbon emission intensity in 30 provinces and 
cities in China from 2000 to 2012 using a spatial lag model. The results showed that population structure, 
energy intensity, energy structure, and industrial structure are the main influencing factors of carbon 
emission intensity in China [14]. The research by Ibrahim M. H et al. shows that in highly developed 
regions, financial development is beneficial for reducing carbon emission intensity [15]. Liang S et al. 
constructed a spatial panel model from the perspective of innovation driven, combined with innovative 
technology and scale factors, and found that innovative technology, foreign direct investment, and GDP 
have a significant negative impact on carbon emission intensity [16]. 

In addition, Ma Yanyan et al.'s research revealed that technological progress has significantly 
promoted the reduction of carbon emission intensity in the province, and there is a positive spatial 
spillover effect; The role of industrial structure in reducing carbon emission intensity in this province is 
not significant, but there is a negative spatial spillover effect [17]. Wang S et al. analyzed the spatial 
spillover effect of carbon emission intensity in 283 cities in China and found that there is a spatial 
spillover effect of carbon emission intensity in Chinese cities, and there is heterogeneity of spillover 
effects in different regional environments [18]. Thursday's study by Jun and Jiang Qiuchi used a dynamic 
spatial Durbin model to study the influencing factors of inter provincial carbon emission intensity in 
China. The results showed that economic growth and technology investment have a negative spatial 
direct effect on carbon emission intensity, while industrial structure, energy intensity, and energy 
consumption structure have a positive spatial direct effect on carbon emission intensity, and technology 
investment has a negative spatial spillover effect, Energy intensity has a positive spatial spillover effect 
[19]. Zhao Guimei et al. combined the STIRPAT model with the EKC model to examine the spatial 
spillover characteristics of factors affecting carbon emission intensity in China [20]. 

In summary, existing research has provided us with valuable references, but there are still some 
shortcomings. In terms of research methods, the static spatial Durbin model is currently mainly used to 
analyze the spatial effects of carbon emission intensity, with less consideration given to dynamic effects, 
which limits the in-depth analysis and explanation of the spatial effects of carbon emission intensity. 
Therefore, this article will construct a dynamic spatial Durbin model to study the spatial effects of 
regional carbon emission intensity, including spatial direct effects and spatial spillover effects, and 
provide countermeasures and suggestions for reducing regional carbon emission intensity. 

3. Model Building 

3.1 Selection and Explanation of Influencing Factors 

Due to the lack of authoritative official institutions in China that directly release carbon dioxide 
emission data, conducting carbon emission intensity research requires first verifying and calculating 
carbon dioxide emissions. This article uses the exponential decomposition method to calculate carbon 
dioxide emissions, and calculates the total carbon dioxide emissions of a region or industry by 
multiplying and accumulating the consumption of different types of fossil fuels and carbon emission 
factors [21, 22, 23].  

Based on literature review and theoretical analysis, with reference to the studies of Zhang Cuiju et al. 
[24, 25, 26], the research focuses on the impact of economic level, population density, industrial structure, 
energy structure, scientific research investment, urbanization level, and foreign investment intensity on 
carbon emission intensity. The following factors were selected for analysis, and the dependent variable 
was Y, the total carbon emission intensity, which is the ratio of carbon emissions to regional gross 
domestic product.  
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The data of 30 provinces, cities and autonomous regions in China from 2000 to 2021 (data on Hong 
Kong, Macao, Taiwan and Xizang are temporarily unavailable) were selected for research. The data is 
sourced from the "China Statistical Yearbook", "China Energy Statistical Yearbook", "China Urban 
Statistical Yearbook", as well as the statistical yearbooks of various provinces and cities, as well as the 
"National Economic and Social Development Statistical Bulletin". To ensure the consistency, 
completeness, and accuracy of the data, moving average and trend prediction methods are used for 
imputation of individual missing data. In addition, in order to eliminate the influence of price factors, the 
actual amount of foreign investment used is first converted from US dollars to RMB using the average 
exchange rate of the current year. All design price variables are adjusted using the GDP deflator of each 
city's province to the actual variables based on the initial 2000 years of the sample. To reduce the absolute 
difference between the data and avoid the impact of individual extreme values, the original indicator data 
is logarithmized. The descriptive statistics are shown in Table 1. 

Table 1: Descriptive Statistics of Variables 

Variable Mean Std.Dev.   Min Max    Obs 
𝑙𝑛𝑌 0.931 0.729 -1.143 2.950 660 
𝑙𝑛𝑋ଵ 9.185 0.522 7.887 10.78 660 
𝑙𝑛𝑋ଶ 5.432 1.271 1.967 8.275 660 
𝑙𝑛𝑋ଷ -0.0296 0.389 -0.704 1.667 660 
𝑙𝑛𝑋ସ -3.629 0.694 -5.878 -2.210 660 
𝑙𝑛𝑋ହ -4.508 0.694 -6.493 -2.729 660 
𝑙𝑛𝑋଺ -0.711 0.327 -1.974 -0.110 660 
𝑙𝑛𝑋଻ -4.195 1.117 -9.210 -1.921 660 

3.2 Structural modeling 

According to existing research, China's economic development shows a strong spatial correlation, 
and the process of economic development cannot be separated from energy consumption, which 
generates a large amount of carbon dioxide. It can be seen that carbon emission levels also have a 
significant correlation in geographical space. Therefore, this article uses a spatial econometric model 
based on spatial correlation. Currently, widely used econometric models include Spatial Lag Model 
(SLM), Spatial Error Model (SEM), and Durbin Spatial Model (SDM). The Spatial Durbin Model (SDM) 
is an econometric model that combines the characteristics of SLM and SEM. It introduces the spatial lag 
term of explanatory variables and explanatory variables to better evaluate the spatial effects measured 
from panel data and better handle spatial interdependence and geographical dependencies, and can 
provide more accurate prediction results. The Spatial Durbin Model (SDM) has certain advantages in 
solving spatial effects problems, but specific applications need to be selected and adjusted according to 
different research problems. 

3.2.1 Spatial weight matrix 

Geographical location can reflect the degree of mutual relationship between regions. This article 
constructs a geographic distance weight matrix based on the geographical connections of each province 
and the actual geographic distance. The element W୧୨  is the reciprocal of the nearest road distance 
between region i and region j, and the element d୧୨ is the nearest road distance between region i and 
region j. The matrix is: 

𝑊௜௝ ൌ ൝
ଵ

ௗ೔ೕ
     , 𝑖 ് 𝑗

0           , 𝑖 ൌ 𝑗,
                             (1) 

3.2.2 Spatial autocorrelation analysis 

Moran’s I index is mainly used to reflect the similarity of attribute values between a certain spatial 
unit and adjacent spatial units, in order to analyze the overall spatial distribution and spatial correlation 
of the region: 
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In the formula, the Moran index I  represents the overall correlation of various regional indicators 

in China, n  represents 30 provinces in Chinese Mainland, ij
 is the spatial weight matrix,  and 

 are independent variables and mean values, respectively. The Moran index mainly ranges from -1 
to+1. When the Moran index is positive, it indicates a positive relationship between provinces and cities, 
and the larger the value, the stronger the correlation. 

3.2.3 Panel data regression analysis 

Stata's unofficial command xsmle provides MLE estimation methods for spatial panel models. This 
command has a wide range of applications and can be used to estimate various types of spatial panel 
models. Therefore, for researchers who need to estimate spatial panel models, xsmle is a very useful tool. 
Its model can be represented as: 

൜
𝑦௜௧ ൌ 𝜏𝑦௜,௧ିଵ ൅ 𝜌𝑤௜

ᇱ𝑦௧ ൅ 𝑥௜௧
ᇱ 𝛽 ൅ 𝑑௜

ᇱ𝑋௧𝛿 ൅ 𝑢௜ ൅ 𝛾௧ ൅ 𝜀௜௧
𝜀௜௧ ൌ 𝜆𝑚௜

ᇱ𝜀௧ ൅ 𝜈௜௧
               (3) 

Among them, y୧,୲ିଵ  represents the first-order lag of the dependent variable y୧୲  (if the research 
object does not have temporal characteristics, it can be set as τ=0), which is the value of the previous 
time point; d୧

ᇱX୲δ  represents the spatial lag of the explanatory variable, which considers spatial 
correlation through spatial weight D, d୧

ᇱ is the i-th row of the corresponding spatial weight matrix D; γ୲ 
represents the time effect, usually using time dummy variables to control the time trend; If m୧

ᇱ represents 
the i-th row of the perturbation space weight matrix M, it is usually necessary to consider the impact of 
unobserved factors on the model. By using these parameters, it is possible to more accurately analyze the 
spatiotemporal correlation and spatial spillover effects of variables. 

Another method for modeling spatial effects is to assume that the dependency of the explained 
variable y୧ in region i is influenced by the independent variables of its neighbors: 

y ൌ Xβ ൅ WXδ ൅ ε                             (4) 

Among them, WXδ Represents the influence from the neighbor independent variable, while δ Is 
the corresponding coefficient vector. This model is called the Spatial Durbin Model (SDM), as equation 
(3) does not have endogeneity, it can be directly used for OLS estimation; It should only be noted that 
there may be multicollinearity between the explanatory variables X and WX. If δ= 0, then equation (3) 
can be simplified as a general linear regression model. In order to further consider spatial correlation, the 
spatial lag model can be combined with the spatial error model to form the spatial Durbin model. The 
Durbin model allows for a more comprehensive analysis of the relationship between the dependent 
variable and the independent variable, while considering the impact of spatial spillover effects. The 
combined spatial Durbin model is: 

y ൌ λWy ൅ Xβ ൅ WXδ ൅ ε                          (5) 

4. Empirical analysis results 

4.1 Analysis of the current situation of regional carbon emissions 

Based on Figure 1, describe and analyze the temporal changes in carbon emissions and carbon 
emission intensity in China from 2008 to 2021. Overall, China's carbon emissions have shown a 
continuous upward trend without a significant downward turning point. The national carbon emission 
intensity shows a continuous linear downward trend. The increase in carbon emissions is related to 
various factors, but the decrease in carbon emission intensity indicators indicates that China is 
increasingly focusing on environmental protection and sustainable development while achieving 
economic development, and the energy utilization efficiency of various regions is becoming higher. 
Therefore, by monitoring and controlling carbon emission intensity when controlling carbon emissions, 
it can effectively guide the formulation and implementation of policies in various regions, promote 
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economic transformation and upgrading, and sustainable development. At the same time, it is also 
conducive to protecting and improving environmental quality. 

 

Figure 1: Trends in China's Carbon Emissions from 2008 to 2021 

 

Figure 2: Distribution of Total Regional Carbon Emissions and Regional Carbon Emission Intensity in 
2022 

From Fig. 2, we can see that there are significant differences in the spatial distribution of carbon 
emissions among 30 provinces (including cities and autonomous regions) in China. The specific 
manifestations are as follows: 

(1) Among the differences in total carbon emissions between provinces in China, it can be observed 
that there are significant differences in carbon emissions between provinces. Firstly, Shandong, Inner 
Mongolia, Shanxi, Hebei, Liaoning, and Jiangsu are among the top six industrial provinces, with total 
carbon emissions exceeding 900 million tons. The industrial structure of these provinces leans towards 
heavy industry, the energy structure is relatively single, and they lean towards coal, so they can provide 
a large number of high energy products for other regions. On the contrary, the six provinces ranked lower 
are Qinghai, Hainan, Beijing, Chongqing, Guizhou, and Tianjin. 

(2) Some significant differences can be observed in China's carbon emission intensity. According to 
data, the top six provinces are Ningxia, Inner Mongolia, Shanxi, Xinjiang, Liaoning, and Hebei, which 
have higher carbon emission intensity. The energy structure of these provinces is mainly based on coal, 
so in the process of economic development, carbon emissions are relatively large. On the contrary, among 
the six lower ranked provinces, Beijing, Sichuan, Zhejiang, Shanghai, Guangzhou, and Chongqing have 
relatively low carbon emission intensity. The energy structure of these provinces is mainly focused on 
clean energy, and the achievements of their economic transformation and green development are 
gradually emerging. 
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Overall, due to certain differences in carbon emissions and intensity among different provinces in 
China, there are also differences in the pressure of controlling carbon emissions among different 
provinces in China. Some provinces with high carbon emissions and intensity, such as Hebei Province, 
Inner Mongolia Province, and Shanxi Province, face significant pressure in controlling carbon emissions 
due to their high carbon emissions and intensity. On the contrary, some provinces with low total and 
intensity, such as Beijing and Shanghai, which mainly focus on the service industry, have relatively low 
total and intensity carbon emissions, so the pressure to control carbon emissions is relatively small. 
However, some provinces with higher total emissions but relatively lower intensity, such as Jiangsu and 
Guangdong, also face certain challenges in controlling carbon emissions due to their large emissions. 
Therefore, each province in China needs to take different measures based on its own situation to control 
carbon emissions and achieve emission reduction targets. 

4.2 Analysis of spatial autocorrelation results 

 

Figure 3: Global Moran Index Test Results 

Using Stata software to calculate the global Moran's I index of carbon emission intensity in different 
regions of China from 2000 to 2021, we can see the temporal trend of regional development in China. 
From the test results in Figure 3, it can be seen that the Moran's I index is all positive and significant at 
the 5% level, indicating that various regions in China have shown significant positive spatial effects in 
each year. Therefore, spatial econometric analysis can be conducted. The positive relationship between 
various regions in our country fluctuates normally over time, which is also corresponding to the 
government's policies. With the growth of our country's economy, policies have increased economic and 
environmental exchanges in each province. In the foreseeable future, the people of various regions in 
China will definitely be able to closely unite and integrate talent resources, in order to better and faster 
achieve the goal of dual carbon. 
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Figure 4: Scatter plot of local Moran's I index for regional carbon emission intensity 

Use Stata software to calculate the local Moran's I index of carbon emission intensity in different 
regions of China from 2000 to 2021, and draw Moran scatter plots with the years 2000, 2005, 2010, 2015, 
2020, and 2021. The Moran index scatter plot has the following four types of spatial connections. The 
first type is the first quadrant (H-H), and the H-H type exhibits a spatial positive correlation, which is the 
aggregation of high-level provinces and high-level provinces; The second type is the second quadrant 
(L-H), where the L-H type exhibits a spatial negative correlation, which is the aggregation of low-level 
and high-level provinces; The third type is the Third Quadrant (L-L), which exhibits a spatial positive 
correlation and is the aggregation of low-level provinces and regions; The fourth category is the fourth 
quadrant (H-L), where the H-L type exhibits a negative spatial correlation, which is the aggregation of 
high-level and low-level provinces; Based on the analysis in Figure 4, we can see that the number of 
provinces in high value and low value clusters accounts for about 5/6 of the total number of provinces in 
the study area, indicating that high value and low value clusters dominate, and carbon emission intensity 
has a significant positive spatial autocorrelation and strong spatial agglomeration. 

4.3 Comprehensive analysis of elements based on spatial econometric models 

Table 2: Test Results for Model Selection 

Testing Method Test statistic results p-value 
LM-Lag 165.345 0.000 

Robust LM-Lag 61.382 0.000 
LM-Error 107.088 0.000 

Robust LM-Error 3.124 0.077 
LR-SDM-SEM 74.7 0.000 
LR-SDM-SAR 80.57 0.000 
LR-both-time 942.75 0.000 
LR-both-ind 60.06 0.000 

Hausman 46.53 0.000 
Wald-SAR 87.06 0.000 
Wald-SEM 80.88 0.000 

The data used in Table 2 below have all passed the correlation and collinearity tests, and a spatial 
effect measurement model has been selected based on the Moran's I test. Firstly, the LM test results 
indicate that both spatial error and spatial lag models are significant at a 1% significance level, and a 
spatial econometric model can be chosen for empirical research. Then, the LR likelihood ratio test 
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statistical data also passed the test at the significance level of 1%, and there were individual and time 
effects. Meanwhile, the Hausman test results indicate that the fixed effects model is superior to the 
random effects model. Finally, the Wald test showed that choosing the SDM model was more optimal 
compared to SEM and SAR models. The inspection results are shown in Table 2: 

In summary, the fixed effects and bidirectional fixed effects models of the optimal spatial Durbin 
model (SDM) were selected for spatial econometric analysis in this article. 

Table 3: Spatial Durbin Model Results 

         lny      Coef.       Std. Err.      z     P>|z|     
main    

          x1    0.0000976   0.0000281   -3.48   0.001     
          x2    0.0010393   0.0006109    1.70   0.089   
          x3   -0.5749901   0.223949    -2.57   0.010     
          x4   -1.476275    0.643455    -2.29   0.022     
          x5   -4.415052    1.141393    -3.87   0.000     
          x6   -16.85263    2.957997    -5.70   0.000    
          x7    70.42455    17.37333     4.05   0.000      
Wu           

          x1   -0.0004681  0.0001368    -3.42   0.001    
          x2    0.011808   0.0044915     2.63   0.009    
          x3   -5.734985   1.227154     -4.67   0.000    
          x4   -8.450599   4.57296      -1.85   0.065    
          x5    4.581935   5.56275       0.82   0.410     
          x6   -76.89355   20.43119     -3.76   0.000     
          x7    156.2589   98.84851      1.58   0.114    

Spatial       
         rho   -0.8033607  0.1778935    -4.52   0.000    

The Durbin model, which uses the natural logarithm of carbon emission intensity as the dependent 
variable, reveals the effects of various factors on carbon emission intensity in Table 3. The research 
results indicate that the p-value of the spatial autoregressive coefficient is 0.000, which is significant at 
the 1% level, and its coefficient is -0.8034, which is negative, indicating that the explanatory variable y, 
i.e. carbon emission intensity, has a negative spatial spillover effect. From the statistical P-values of 
spatial direct effects, x1, x5, x6, and x7 reached a significance level of 1%, with coefficients of 0.0001, 
-4.415, -0.357, and -0.08, respectively. X3 and x4 reached a significance level of 5%, with coefficients 
of -0.575 and -1.4763, respectively. The significance of x2 reaches a 10% level. From the coefficient, it 
can be seen that economic growth, population density, and foreign investment intensity have a promoting 
effect on carbon emission intensity, while industrial structure, energy structure, scientific research 
investment, and urbanization level have a restraining effect on carbon emission intensity. 

The spatial spillover effect term is more indicative of spatial conduction effects than the coefficient 
of spatial direct effects. Wx1, Wx2, Wx3, Wx4, and Wx6 are significant at the 10% level, with 
coefficients of -0.0005, 0.0118, -5.735, -8.4506, -76.8936, respectively. A negative x2 coefficient 
indicates that population density has a positive spatial spillover effect, and an increase in population 
density has a positive conduction effect on nearby carbon emission intensity. The coefficients of x1, x3, 
x4, and x6 are negative, indicating a negative spatial spillover effect on economic growth, industrial 
structure, energy structure, and urbanization level. The adjustment of economic growth, industrial 
structure, energy structure, and urbanization level has a negative transmission effect on adjacent carbon 
emission intensity. The estimated coefficients of X5 and x7 are positive, but not significant, indicating 
that an increase in scientific research investment and foreign investment intensity will promote an 
increase in carbon emission intensity in adjacent regions, resulting in a spatial spillover effect of carbon 
emissions, but the effect is not significant. 

The above results demonstrate the complexity, diversity, and diversity of regional socio-economic 
development in China. Factors such as economic structure, industrial characteristics, and capital flow in 
different regions will have different impacts on carbon emissions. Therefore, when formulating emission 
reduction policies, it is necessary to consider the characteristics of different regions and adopt 
differentiated emission reduction measures to achieve the goal of carbon reduction. In addition, this also 
reminds us to pay more attention to the balance between economic development and environmental 
protection, adopt a sustainable development path, and achieve coordinated development of the economy, 
society, and environment. 
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Table 4: Decomposition effects of spatial spillover effects 

    Coef.    Std. Err.      z           P>|z| 
Direct effect  

          x1   -.0000844    .000029    -2.90   0.004     
          x2    .0006609   .0005569     1.19   0.235     
          x3   -.3892321   .2159132    -1.80   0.071     
          x4   -1.227778   .6261699    -1.96   0.050     
          x5   -4.683299    1.19732    -3.91   0.000     
          x6   -14.66199   2.849353    -5.15   0.000     
          x7    67.6089     18.345     3.69   0.000     

Indirect effect   
          x1   -.0002303   .0000792    -2.91   0.004    
          x2    .0065644   .0024651     2.66   0.008     
          x3   -3.079052   .6939933    -4.44   0.000    
          x4   -4.394959    2.58002    -1.70   0.088     
          x5   5.165467   3.549339     1.46   0.146    
          x6   -37.92019   12.08783    -3.14   0.002     
          x7    56.2079   56.84591     0.99   0.323    

Total effect   
          x1   -0.0003146   .0000792    -3.97   0.000    
          x2    0.0072253   .0025842    2.80   0.005     
         x3   -3.468284   .7029876     -4.93   0.000    
         x4   -5.622738   2.595208     -2.17   0.030    
          x5    0.4821676   3.223613    0.15   0.881    

           x6   -52.58218   12.44226      -4.23   0.000    
          x7    123.8168   53.69814     2.31   0.021     

From the results in Table 4, it can be seen that x1, x3, and x6 (economic growth, industrial structure, 
and urbanization level) are very significant in terms of direct effects, indirect effects, and overall effects. 
This indicates that an increase of one unit in economic growth, industrial structure, and urbanization level 
will lead to a change of -0.0001, -0.3892, and -14.662 units in the carbon emission intensity of the region, 
respectively. In the indirect effect, an increase of one unit in economic growth, industrial structure, and 
urbanization level can lead to a change of -0.0002, -3.079, and -37.9202 units in the carbon emission 
intensity of neighboring regions, respectively. In the total effect, the economic growth, industrial 
structure, and urbanization level changes in all regions can have an impact of -0.0003, -3.4683, and -
52.5822 units on the carbon emission intensity of the region. 

5. Conclusion 

This article analyzes the influencing factors of regional carbon emission intensity in China from 2000 
to 2021 using the spatial econometric Durbin model method using Stata15.0 and conducts correlation 
tests. Analyzing the current situation and influencing factors of carbon emissions spatial differences in 
30 provinces (cities, autonomous regions) in China will contribute to the achievement of China's "dual 
carbon" goals. After analysis, the following conclusions can be drawn: 

(1) The carbon emission intensity between regions in China has a significant spatial effect. In terms 
of the overall spatial pattern, the regional carbon emission intensity shows a significant positive spatial 
autocorrelation, with good continuity and spatial self-organization. This means that neighboring 
provinces have similar performance in terms of carbon emission intensity. Local spatial autocorrelation 
shows a spatiotemporal distribution feature of agglomeration and differentiation in regional carbon 
emission intensity, with certain spatial locking or path dependence characteristics. 

(2) The test results of the spatial Durbin model indicate that economic level, population density, and 
foreign investment intensity have a positive spatial direct effect on regional carbon emission intensity; 
The industrial structure, energy structure, scientific research investment, and urbanization level have a 
negative spatial direct effect on the intensity of regional carbon emissions. The economic level, industrial 
structure, energy structure, and urbanization level have a negative spatial spillover effect on carbon 
emission intensity; Population density has a positive spatial spillover effect on carbon emission intensity; 
The spatial spillover effect of research investment and foreign investment intensity on carbon emission 
intensity is not significant. 
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(3) The impact of various factors on carbon emission intensity has significant spatial heterogeneity, 
and the same factor has different impacts in different regions. Economic growth, industrial structure, and 
urbanization level are important factors that affect the intensity of carbon emissions. Therefore, in order 
to better control carbon emissions, China needs to take different emission reduction measures tailored to 
the characteristics of different provinces while considering overall development, in order to achieve the 
goal of carbon reduction. 

Overall, controlling carbon emissions is a complex and systematic issue. The country, province, and 
region must fully implement the measure of reducing emissions and controlling carbon emissions, and 
formulate production transformation plans and goals based on the actual situation of the country and the 
local area. Local governments must strengthen regional exchanges and cooperation, and jointly manage 
carbon dioxide emissions between regions. Abandoning the misconception of 'pollution before treatment' 
to promote the transformation, upgrading, and sustainable development of China's economy. Enterprises 
need to actively respond to national policies, strengthen technological innovation, actively develop new 
energy technologies, gradually phase out high energy consumption and high pollution technologies, 
establish a new industrial structure, and gradually reduce the share of the secondary industry. All citizens 
in society should strengthen their awareness of environmental protection, implement a low-carbon 
lifestyle, reduce unnecessary energy consumption and waste, and jointly create a good social atmosphere 
of energy conservation and environmental protection. China needs to actively participate in international 
climate change negotiations, strengthen cooperation with other countries, and jointly address the 
challenges of global climate change. Through the joint efforts of the government, enterprises, the whole 
society, and international cooperation, we believe that China's goal of "carbon peaking and carbon 
neutrality" will be achieved. 
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