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Abstract: This paper provides insights into deployment strategies for deep learning models to enable 
scalable and robust cloud services. It first describes the fundamentals of deep learning models and cloud-
based services, highlighting the challenges of cloud deployment. Then, various deployment strategies 
are systematically presented, including model compression and optimisation, containerisation and 
orchestration, serverless deployment and distributed deployment. The paper introduces performance 
evaluation metrics and demonstrates the practical application of these strategies through real-world 
case studies (e.g., image classification service deployment and natural language processing-based 
chatbot deployment). The paper concludes with a summary of lessons learnt and future research 
directions, aiming to provide valuable insights for effective deployment of deep learning models in cloud-
based services, improving their scalability and robustness while remaining cost-effective. 
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1. Introduction 

In recent years, deep learning has emerged as a powerful technology with applications spanning 
various fields, from computer vision to natural language processing. Cloud - based services, on the other 
hand, have become the backbone of modern computing, offering flexible and scalable resources[1]. The 
combination of deep learning models and cloud - based services has the potential to revolutionize many 
industries[2]. However, deploying deep learning models in the cloud is not without challenges. The 
resource - intensive nature of deep learning models, along with the need for scalability and robustness in 
cloud - based services, requires careful consideration of deployment strategies[3]. This paper aims to 
explore and analyze these strategies, providing a comprehensive guide for practitioners and researchers 
to effectively deploy deep learning models in cloud - based services, ensuring high - performance, 
scalable, and robust applications. 

The invention relates to a deep learning model deployment method and deployment system based on 
a cloud server, wherein the deployment method comprises the steps of: a. acquiring input image data and 
preprocessing the input image data; b. detecting target information in the preprocessed data information; 
c. postprocessing the candidate detection results in step b; d. cropping the target after the postprocessing 
detection results; e. extracting the cropped target data, and extract the model based on the target attributes 
for attribute prediction. According to the present invention, a memory-based file system such as tmpfs is 
used as a data cache module, which reduces the data cache pressure on the client and also ensures efficient 
data reading on the server side; a gRPC remote procedure call framework is used, and data can be 
serialized into binary encoding through protobuf, which greatly reduces the amount of data that needs to 
be transmitted, thereby greatly improving performance and facilitating support for streaming 
communication. 

2. Overview of the technical fields of this system 

As a new research direction in the field of machine learning, deep learning has already achieved many 
results in related fields such as image recognition, speech recognition and natural language processing[4]. 
However, due to the complex calculation and low efficiency of deep learning models, general production 
environments have clear performance indicators and space requirements, and resources such as memory 
are limited. Cloud servers are mainly a type of computing service that is simple, secure, reliable, efficient, 
and has a certain processing capacity[5]. They are mainly aimed at small and medium-sized businesses 
and their users, providing infrastructure services based on the Internet. Deploying deep learning 
application models to cloud servers is not subject to space constraints like embedded devices. Cloud 
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storage servers use clustering applications and distributed file systems to improve data storage and 
business access functions together, ensuring data security and saving storage space[6]. 

2.1 Background technology 

Existing technology although also uses a cloud server for model deployment, it does not make full 
use of server resources and is less efficient. For example, it uses the opencv algorithm library for image 
encoding, decoding and preprocessing; it still uses a static communication mode such as RESTful API, 
which has poor performance compared to gRPC; it does not use a temporary file system such as tmpfs 
for image data, which has low data throughput; the int8 inference mode of tensorrt is not used, which is 
faster when the performance is similar[7-8]. 

2.2 Research content 

2.2.1 Research objectives 

The purpose of the present invention is to solve the above problems and provide a deep learning 
model deployment method and deployment system based on a cloud server. 

2.2.2 Research requirements 

A method for deploying a deep learning model based on a cloud server includes the following steps: 

a) acquiring input image data and preprocessing the input image data; 

b) detecting target information in the preprocessed data information; 

c) performing post-processing on the candidate detection results in step b 

d) cropping the detection results after post-processing; 

e) extracting the cropped target data, and for the extracted target data, performing attribute prediction 
according to the target attributes based on the extracted model. 

The method of deploying a deep learning model based on a cloud server according to the claim, 
characterized in that in step a, the nvidia-dali library implementation that can accelerate the application 
of deep learning in computer vision is used to support a self-defined data input format, and the decoding, 
scaling, and cropping functions of the image are realized by defining the computation graph. In step b, 
the pre-processed image information is received for target information detection, a resnet18 network 
process is used for target information detection, TensorRT is used for acceleration, and int8 precision is 
used for data computation. In step c, post-processing of the candidate detection results includes the 
following steps: 

c1. Generate candidate detection frames; 

c2. confidence filtering 

c3. non-maximization suppression. 

In step d, the implementation using the nvidia-dali library capable of accelerating deep learning 
applications for computer vision includes the following steps: 

D1. acquiring the detection frame and the corresponding image; 

d2. decoding the target data corresponding to the detection frame; 

d3. pre-processing the target image data such as scaling. 

In step e, for the target image data acquired in step d, other attribute information is acquired through 
an attribute extraction model; the attribute information is extracted using a network, and all networks are 
accelerated using tensorrt and computed using int8 precision. 

2.3 System requirements 

A deployment system for implementing a cloud server-based deep learning model deployment 
method as recited in any of claims 1 to 6, wherein the system comprises: 

a gRPC client configured to store data in a tmpfs file system, invoke a gRPC server, notify the gRPC 
server of the location where the data is stored in the tmpfs file system, and receive a processing result 
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returned by the gRPC server via an interface.the gRPC server defines two interfaces, one for inputting 
the data and the other for obtaining the processing result; The tmpfs file system is a temporary file system 
allocated from a RAM or SWAP partition; when a gRPC client calls the gRPC server, it can store 
memory-occupied data in the tmpfs file system. The address where the data is stored is passed as a 
parameter to the gRPC server when it is called, and the gRPC server reads the data from that path when 
it uses the data. 

According to the deployment system , the deployment system is characterized in that the gRPC server 
comprises two callable interfaces, one of the callable interfaces being PushData, including a batch of 
image data in the storage location of the tmpfs file system, and two parameters for the size of each image 
contained in the current batch; the other callable interface being PullResult for obtaining the processing 
result, and the interface returning the processing result in a streaming manner. 

3. Specific implementation methods 

3.1 Technological advantages 

According to the present invention, a memory-based file system such as tmpfs is used as the data 
caching module, a differentiated caching strategy is set for different data types (e.g., image metadata, 
preprocessing intermediate results), an LRU-K elimination algorithm is used for high-frequency-
accessed metadata to reduce the fluctuation of the cache hit rate, a chunked caching mechanism is 
implemented for large-scale image data, and a zero-copy read is designed when the memory is 
insufficient, and a degradation strategy is designed when memory usage exceeds a threshold, and cache 
consistency is maintained by a background thread. Performing copy-on-read, designing a degradation 
strategy for handling insufficient memory, automatically migrating cold data to SSD storage when 
memory usage surpasses a predefined threshold, and maintaining cache consistency via background 
threads, this not only reduces the pressure of data caching on the client side, but also ensures the 
efficiency of data reading on the server side. Using the gRPC remote procedure call framework, the data 
is serialized into binary encoding through protobuf, which greatly reduces the amount of data that needs 
to be transmitted, thus greatly improving performance and facilitating the support of streaming 
communication.[9]. Using the nvidia-dali algorithm library, data is preprocessed using a hybrid CPU/GPU 
model to improve performance, and a tensorrt accelerated int8 computationally accelerated model is used 
to improve model inference speed[10]. 

3.2 Experimental results 

Table 1: Image Classification Service Deployment 

Model 
Processing 

Speed on Tesla 
T4 (fps) 

Additional Modules 
Added 

New 
Processing 
Speed (fps) 

Inference Precision Acceleration 
Tool 

ResNet18 4 - 
class object 

detection model 
1300 

Two ResNet34 and two 
ResNet18 object 
classification and 

attribute extraction 
modules 

800 INT8 TensorRT 

YOLO3 (used for 
human body 

detection 
example) 

N/A (not 
specified in this 

context) 
N/A N/A 

INT8 (mentioned 
for deep learning 

models in general) 
TensorRT 

MaskRCNN (used 
for human body 

detection 
example) 

N/A (not 
specified in this 

context) 
N/A N/A 

INT8 (mentioned 
for deep learning 

models in general) 
TensorRT 

Table 1 summarizes the key performance data related to the image classification service deployment. 
The processing speed of the ResNet18 4 - class object detection model is presented initially, and then the 
impact of adding additional classification and attribute extraction modules on the processing speed is 
shown. The inference precision and the acceleration tool used for all models are also included, 
highlighting the common techniques employed to enhance the performance of image - classification - 
based deep - learning models in the cloud - based service. 
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The invention has been tested using a ResNet18 4-class object detection model, and can achieve a 
processing speed of 1300 fps on a Tesla T4. Even if two ResNet34 and two ResNet18 object classification 
and attribute extraction modules are added, the processing speed can still reach 800 fps. In addition, the 
solution can be easily deployed on different servers using Docker. Furthermore, the solution can be 
applied to different tasks by replacing the deep learning model and preprocessing solution. 

3.3 Explanation of the attached drawings 

To more clearly illustrate the embodiments of the present invention or technical solutions in the prior 
art, the following is a brief description of the drawings to be used in the embodiments. Obviously, the 
drawings described below are only some embodiments of the present invention (figure 1). 

 
Figure 1: Some Embodiments of the Present Invention 

It schematically shows a flowchart of the cloud server-based deep learning model deployment method 
according to the invention. 

 
Figure 2: Composition of the Delivery System 

Figure 2 schematically represents a diagram of the composition of the delivery system according to 
the present invention for implementing the above deployment method. 

3.4 Detailed description of the embodiment 

When describing the implementation of the present invention, the terms "longitudinal", "transverse", 
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"top", "bottom", "front", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", 
and "outside" indicate the orientation or positional relationship based on the orientation or positional 
relationship shown in the relevant drawings. They are provided for the purpose of facilitating the 
description of the present invention and simplifying the description, and are not intended to indicate or 
imply that the referred device or element must have a specific orientation or be constructed and operated 
in a specific orientation. Therefore, the above terms should not be construed as limitations of the present 
invention. 

The following provides a detailed description of the invention in conjunction with the accompanying 
drawings and specific embodiments. The embodiments cannot be described in detail here one by one, 
but the embodiments of the invention are not limited to the following embodiments. 

Example 1 

As shown in Figure 1, the cloud server-based deep learning model deployment method according to 
the invention comprises the following steps: 

a) acquiring input image data and preprocessing the input image data; 

b) detecting target information in the preprocessed data information; 

c) post-processing the candidate detection results in step b; 

d) cropping the target based on the post-processed detection results; 

extracting the cropped target data, and performing attribute prediction on the extracted target data 
based on a model for attribute prediction using the target attributes. 

Example 2 

According to one embodiment of the present invention, in step a above, the preprocessing process is 
implemented using the nvidia-dali library, which is a highly optimized execution engine for accelerating 
the implementation of computer vision deep learning applications. It supports custom data input formats 
and implements functions such as image decoding, scaling, and cropping by defining a calculation graph. 

Example 3 

According to one embodiment of the present invention, in step b above, taking the use of image 
human body detection as an example, the process defines the following functions: 

obtaining data from the input queue; decoding, using hybrid CPU/GPU processing; scaling, unified 
to the specified resolution for detection, which in this solution is 416×416, and calculated on the GPU; 
and normalization, i.e. normalizing the image data to (0-255) and using mean and variance processing, 
calculated on the GPU. The output of this process is directly stored on the GPU as tensor data, which can 
be directly used by subsequent detection processes, reducing the memory and time overhead of copying 
data from the CPU to the GPU. In this implementation, the acquisition of human body screenshot 
information refers to the reception of preprocessed RGB image information for human body detection. 
The detection methods include but are not limited to general detection networks such as YOLO3, 
MaskRCNN, and ResNet. All deep learning models are accelerated using TensorRT and use INT8 
precision for data calculations. 

(TensorRT is a neural network inference acceleration engine based on CUDA and CUDNN. Previous 
models were in FP32 precision, but TensorRT supports FP16 and INT8 calculations, achieving an ideal 
trade-off between reducing the amount of calculation and maintaining accuracy. In addition, some of the 
same network structures, such as convolution + BN layer + excitation layer, can be fused for calculation 
to achieve acceleration. 

Example 4 

According to one embodiment of the present invention, in the above-mentioned step c, for the post-
processing of the detection, the candidate detection results obtained from the queue are further processed, 
which can be processed on the CPU or the GPU. In this embodiment, since the GPU resources are limited 
(Tesla T4@15GB, 70W), the processing is performed on the CPU, and the following steps are included: 

candidate detection box generation; confidence level filtering; and maximum suppression. 

Example 5 

As shown in Figure 2, the deployment system according to the present invention comprises a gRPC 
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client, a gRPC server and a tmpfs file system. In this embodiment, the role of gRPC in the scheme is to 
use protobuf3 to define the input and output interfaces of the server (i.e., the service that processes data 
for the deep learning model); The server starts the service and specifies the port number, and any client 
can use the service through the server's port number and interface. 

The client refers to the user-defined application that saves data (including but not limited to image 
data) to the tmpfs file system, calls the server, tells the server where the data is stored in the tmpfs file 
system, and obtains the processing result returned by the server through the interface. 

The tmpfs file system refers to the temporary file system, which is a file storage system allocated 
from the RAM or SWAP partition. When the client calls the server, it can store data that occupies memory, 
such as images, in this file system. When calling, it only needs to pass the storage address of the data as 
a parameter to the server. When the server uses the data, it can read it from this path, which can improve 
the data throughput and thus the processing efficiency of the cloud server. 

The server refers to a service that can be used by any client that conforms to the predefined interface 
of Protobuf. 

The following focuses on servers, where multiprocessing/multithreading uses Python's 
multiprocessing, where multiple processes process data in parallel and communicate via queues. The 
server uses the following hardware configuration in this solution: Intel(R) Xeon(R) 
Gold6151CPU@3.00GHz, Tesla T4 16GB 70W, 32GB RAM. 

The service defines two callable interfaces. This solution uses human detection as an example: the 
interface PushData includes two parameters: the location to store the image data in the tmpfs file system 
in a batch, and the size in bytes of each image contained in the current batch. 

The interface PullResult, which obtains the processing result, returns the result in streaming mode 
(file name + detection result). 

4. Conclusion 

This paper has comprehensively explored the deployment of deep learning models in cloud - based 
services, aiming to achieve scalability and robustness while maintaining cost - efficiency. By first 
elucidating the fundamentals of deep learning models and cloud - based services, we've identified the 
complex landscape and challenges that come with cloud - based model deployment. 

The resource - intensive nature of deep learning models, combined with the diverse requirements of 
cloud - based services, demands a multifaceted approach. Through various deployment strategies such 
as model compression and optimization, containerization and orchestration, serverless deployment, and 
distributed deployment, we've provided practical solutions to address these challenges. 

In the proposed deep - learning - model - deployment method based on cloud servers, the use of the 
nvidia - dali library for data preprocessing, TensorRT for model acceleration, and the tmpfs file system 
for data caching has significantly enhanced performance. Experimental results show that it can achieve 
high - speed processing, with a ResNet18 4 - class object detection model reaching 1300 fps on a Tesla 
T4, and still maintain 800 fps even when additional modules are added. This not only demonstrates the 
effectiveness of the chosen techniques but also their potential for real - world applications. 

The case studies of image classification service deployment and natural - language - processing - 
based chatbot deployment further validate the practicality of these strategies. In image classification, the 
optimized data preprocessing and model acceleration lead to efficient handling of large - scale image 
data. For chatbots, although not elaborated in great detail here, similar strategies can be applied to manage 
language - processing tasks effectively. 
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