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Abstract: Convolutional Neural Network (CNN)-based classifiers have been extensively employed in 
image recognition tasks. However, as CNN networks continue to deepen, existing deep architectures 
often result in a large number of parameters and substantial model sizes. Although deep features often 
contain rich semantic information, the continuous deepening of the network leads to a loss of detailed 
target information due to resolution reduction, ultimately decreasing image recognition accuracy. To 
address this issue, we propose a convolutional classifier that incorporates adaptive interaction and cross 
attention mechanisms. In this study, we design a VGG-like network where the adaptive interaction 
module enhances the feature transformation process of traditional convolution. This module expands the 
receptive field of convolutional kernels, adaptively constructs spatial and channel relationship indicators, 
and outputs more discriminative feature representations. Additionally, the cross attention module 
effectively captures global contextual information, enabling the network to learn spatial dependency 
relationships among features. Our proposed method is compared with both classical and state-of-the-art 
classification models, and experimental results on the CIFAR-10 dataset demonstrate that our method 
achieves the highest accuracy of 88.97%. This advancement will contribute to the improved capture of 
advanced semantic features in the domain of image recognition and target measurement. 

Keywords: Image Recognition, Classifier, Convolutional Neural Network, Adaptive Interaction, Cross 
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1. Introduction 

In the past decade, deep neural networks, and especially convolutional neural networks (CNNs), have 
been extensively utilized as the foundational architecture for training large-scale datasets in image 
classification tasks. These networks rely heavily on convolution operations to provide robust feature 
extraction and representation capabilities, significantly contributing to the success of various downstream 
applications. Among the ongoing efforts to enhance CNNs, improving the representations of advanced 
semantic features stands out as a critical research direction, particularly for boosting the performance of 
image classification systems. 

Recent advancements in deep learning have spurred the evolution of image classification models, 
with convolutional networks like VGGs [1] and ResNets [2] demonstrating remarkable progress in 
capturing high-level abstractions. While these models have outperformed traditional networks like 
AlexNet [3] and ZFNet [4], their improvements are primarily achieved through stacking convolution and 
pooling layers. This approach, while enhancing the network's ability to represent complex features, is 
limited by the receptive field size, hindering the acquisition of contextual information necessary for 
handling natural scenes with multiple categories [5]. Additionally, excessive network layers lead to 
increased model size and parameter count, potentially resulting in the loss of detailed information. To 
address these challenges, recent methods have integrated non-local blocks [6] or distributed convolutions 
[7] into CNNs to improve their capacity to capture spatial dependency relationships and generate richer 
feature representations. Attention mechanisms, employing large kernel convolution operators to capture 
local contextual information, have also shown promise in this regard [9-12]. However, their ability to 
connect information using square-shaped kernels remains limited. 
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In this paper, we introduce an adaptive interaction module aimed at enhancing the discriminative 
representation of features, thereby replacing the traditional convolution operation module. This module 
leverages multiple convolutional filters to independently transform each component, utilizing one output 
to interact with the outputs of the other filters. The close interaction between these filters enables the 
network to adaptively encode spatial contextual information, resulting in the generation of more 
discriminative feature representations. In real-world scenarios, where interference from unrelated areas 
is common [8], we further propose a cross attention module. This module constructs long and narrow 
kernels along the horizontal and vertical dimensions, optimizing the encoding of horizontal and vertical 
contextual information. This approach improves the network's ability to focus on the spatial location of 
features, thereby capturing spatial dependency relationships more efficiently. 

The remainder of this paper is structured as follows: Section 2 introduces the proposed method, 
providing detailed explanations of the adaptive interaction module and cross attention module. Section 3 
presents the entire process and results of the experiments, including both quantitative and qualitative 
evaluations. Finally, Section 4 offers a summary of the paper's contributions and findings. 

2. Methodology 

In this section, we first introduce the overall architecture of the proposed method. Subsequently, we 
provide detailed descriptions of the adaptive interaction module and the cross attention module, 
respectively. 

2.1 Overall Architecture 

As illustrated in Figure 1, the proposed network adopts a streamlined architecture inspired by VGG. 
Initially, the input image undergoes a standard 3×3 convolution to extract fundamental low-level features. 
Subsequently, these features are processed through an adaptive interaction module (AIM), which 
dynamically encodes spatial contextual information, expands the receptive field of the convolution, and 
produces more distinctive feature representations. This module notably enhances the network's capacity 
to capture intricate spatial relationships. Furthermore, a cross attention module (CAM) is incorporated to 
efficiently encode and integrate both horizontal and vertical information, thereby further boosting the 
network's ability to comprehend complex spatial dependencies among features. The combined use of 
these modules significantly improves the network's performance. 

To maintain the integrity of the original features, a residual connection is implemented, followed by 
a standard 2×2 maxpooling layer to reduce the dimensionality of the feature map. The features then pass 
through another 3×3 convolution layer to extract more abstract, higher-level image features. These 
features are iteratively refined through the AIM to enhance their representations. To enhance the 
network's robustness and mitigate overfitting, a dropout layer with a rate of 0.4 is strategically 
incorporated. Finally, the refined features are fed into a fully connected layer to produce the final 
prediction result. This design ensures that the network's output is not only accurate but also reliable, with 
added measures to improve generalization and performance. 

 
Figure 1: Overall architecture of the proposed method. 
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2.2 Adaptive Interaction Module 

Image classification tasks involving natural scenes typically necessitate that the network possess the 
capability to represent advanced abstractions. However, the receptive field of traditional 2D convolution 
operations is primarily governed by the predefined kernel size, leading to a lack of sufficiently large 
receptive fields to capture comprehensive high-level semantic features. This limitation often impedes the 
flow of contextual information within the network. To address the aforementioned challenges, we 
introduce an adaptive interaction module. As illustrated in the green part of Figure 1, the process of this 
module is mainly divided into three parts, each part contains a dilated convolution filter (D-Conv). 

Considering the input X with dimensions C×H×W, where C represents the channel, H and W 
represent the height and width, respectively. From top to bottom, we designate the three inputs as X1, X2, 
and X3, each with dimensions C×H×W. Notably, X1 shares the same feature maps as the original input 
X. In the path of X2, we initially apply an average pooling operation to downsample the input features, 
resulting in a pooled shape of C×(H/r)×(W/r). Here, the kernel size and stride are both set to r×r (with 
r=4 in this study). Following a dilated convolution filter, the number of output channels remains 
unchanged. Subsequently, we upsample the feature map size via bilinear interpolation to restore its 
original spatial dimensions, yielding an output shape of C×H×W, which generates feature weights X2

’ to 
interact X1. The interaction operation can be expressed as: 

X2′ = ℱ(Convd(AvgPoolr(X2)))                         (1) 

Where d represents the dilation rate of convolution, which is set to 2 in this study. ℱ represents the 
bilinear interpolation operator used for calculating feature map size's upsampling. In the path of X3, we 
only perform a dilated convolution to generate X3

’ with the shape of C×H×W. This process can be simply 
expressed as: 

X3′ = Convd(X3)                                (2) 

Unlike the processing of X2, our goal is to extract contextual information from various spatial scales. 
Subsequently, we add X2

’ and X1, and the resulting feature map is element-wise multiplied with X3
’. This 

operation not only facilitates adaptive interaction of contextual information surrounding each spatial 
position but also captures the interdependencies among channels. Lastly, the output of this module is 
obtained by using the result of the final dilated convolution. The aforementioned procedure can be 
formally expressed as follows: 

Output = Convd(X3′ ⨂σ(X2′ ⨁X1))                         (3) 

In which ⨁  denotes element-wise addition, ⨂  denotes element-wise multiplication, and σ 
denotes the Sigmoid activation function. 

To validate the performance of the adaptive interaction module, we employ VGG-16 as a case study. 
While preserving the overall architecture, we adjust the network parameters of VGG-16 to accommodate 
training images with a resolution of 32×32. We substitute all 3×3 convolution layers in VGG-16 with the 
proposed adaptive interaction module (AIM) and visualize the network's receptive field using Grad-CAM 
(Gradient-weighted Class Activation Mapping). For this visualization, we select the intermediate feature 
map from the final convolution operation module. As illustrated in Figure 2, the adaptive interaction 
module effectively enlarges the receptive field of traditional convolutions, enabling accurate localization 
of target features. It is apparent that VGG-16 equipped with AIM captures more extensive contextual 
information. 

 
Figure 2: The visualization of intermediate feature maps produced by VGG-16 is presented. The first 

row displays the original input image, whereas the second and third rows exhibit the visualization 
outcomes of intermediate feature maps generated by VGG-16 using the standard convolution module 

and the proposed adaptive interaction module, respectively. 
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In contrast to dynamic group convolution [13], our approach organizes convolutional filters in a 
heterogeneous manner, with each filter serving a distinct purpose. This arrangement facilitates the fusion 
of contextual information from multiple spatial scales. Compared to traditional convolution, our 
proposed module significantly enlarges the receptive field of the layer, thereby enabling the generation 
of more discriminative feature representations. 

2.3 Cross Attention Module 

When identifying targets with irregular shapes and sizes in real scenes, the feature information of 
targets is often inevitably interfered by unrelated areas, which can affect the network's ability to correctly 
recognize images. 

Therefore, we propose a cross attention module. As shown in the blue part of Figure 1, the module 
can be roughly divided into three steps from left to right. Firstly, the channel of input is compressed, and 
the feature map size is pooled horizontally and vertically, respectively. Then, they are upsampled to the 
original spatial size and fused by element-wise addition. Finally, the channel is extended to the original 
size, and the original input is reweighted by the fused result, which serves as output of the module. 

Given the shape of the original input X as C×H×W, the first 1×1 convolution operation compresses 
the input channel in the ratio of α (which is set to 4 in this study). The output tensor is set as X’ with the 
shape of (C/α)×H×W, which can be expressed as: 

X′ = ReLU(Conv1×1(X))                           (4) 

Next, we perform avepooling operations on X’ vertically and horizontally along two sub-paths. As 
shown in Figure 1, AvgPool1 represents vertical pooling, while AvgPool2 represents horizontal pooling. 
After pooling, the spatial ranges convert to (1, W) and (H, 1), respectively. Unlike 2D pooling of the 
square window, these pooling involve summing and averaging the values on columns and rows, 
respectively. Thus, the vertical pooling calculation and horizontal pooling calculation can be represented 
as: 

P�j = 1
H
∑ p(i,j)1≤i≤H                                (5) 

P�i = 1
W
∑ p(i,j)1≤j≤W                                (6) 

Where p(i,j) represents the value of the i-th row and j-th column, P�i and P�j respectively represent 
the value of a certain column and a certain row after avepooling. These pooling can help collect remote 
contextual information from different spatial dimensions. 

Then, we use a 1D convolution with the kernel size of 3 to encode the vertically and horizontally 
pooled regions separately, modulating the feature information of each spatial position and its adjacent 
areas. Due to the long and narrow pooled region, 1D convolution can easily establish long-range 
dependency relationships between discrete feature positions. The operations of encoding for the 
vertically pooled region and horizontally pooled region are shown as: 

Xv′ = Conv1×3(AvgPool1(X′))                           (7) 

Xh′ = Conv3×1(AvgPool2(X′))                           (8) 

Where Xv
’ has the shape of (C/α)×1×W, and Xh

’ has the shape of (C/α)×H×1. We upsample the spatial 
sizes of Xv

’ and Xh
’ to H×W using interpolation algorithms, which allows the value of each column or 

row to be expanded vertically or horizontally, respectively. In order to obtain more global contextual 
information, the upsampled results are element-wise added and then extended in channel dimension, 
forming cross attention features. This operation can be expressed as: 

Xc
′ = Conv1×1(ReLU(ℱ(Xv′ )⨁ℱ(Xh′ )))                      (9) 

In which Xc
’ has the shape of C×H×W. Finally, Xc

’ is activated by the Sigmoid function and then 
reweights the original input X by element-wise multiplication, serving as the output of the module. This 
operation can be shown as: 

Output = X⨂σ(Xc′ )                             (10) 

All the aforementioned processes are illustrated in Figure 3. The purple box, situated at the 
intersection of the red and blue stripes, serves to integrate the spatial contextual information from both 
vertical and horizontal dimensions. It establishes dependency relationships with the spatial positions of 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 9: 1-8, DOI: 10.25236/AJCIS.2025.080901 

Published by Francis Academic Press, UK 
-5- 

the original input, thereby enhancing the network's ability to comprehend the underlying structure of the 
data. 

 
Figure 3: The illustration of the cross attention module. 

In comparison to the attention module proposed in [14], our cross attention module necessitates 
significantly less computational overhead for spatial transformations. Consequently, our module is more 
lightweight and capable of capturing spatial dependency relationships more efficiently. This enhanced 
efficiency allows the network to better concentrate on the features of targets, thereby improving its 
overall performance. 

3. Experiments 

In this section, we present the experimental setup and results to evaluate the performance of the 
proposed method. Firstly, we provide details regarding the dataset used in our experiments. Following 
this, we outline the experimental settings and implementation specifics. Subsequently, we introduce the 
performance metrics employed for evaluation. Finally, we present and analyze the experimental results. 

3.1 Dataset 

In this study, we employ the CIFAR-10 dataset, a well-established benchmark specifically designed 
for image classification tasks. The dataset consists of 60,000 color images, each with a resolution of 
32×32 pixels, evenly distributed across 10 categories, with 6,000 images per category. The dataset is 
partitioned into a training set and a testing set in an 8:2 ratio, comprising 50,000 and 10,000 images, 
respectively. It should be noted that the dataset remains unaltered and unprocessed during our 
experiments, ensuring a fair evaluation. 

3.2 Experimental Settings and Implementation Details 

The experiments were conducted on an NVIDIA GeForce RTX3050 GPU and an Intel Core i7-
12700H CPU, using the PyTorch 1.12.0 framework. The hyper-parameters for training were carefully 
selected: the initial learning rate was set to 0.01, the optimizer chosen was Stochastic Gradient Descent 
(SGD) with a momentum of 0.9, and the weight decay was set to 5e-3. The training was carried out over 
100 epochs with a batch size of 256, resulting in a total of 19,600 iterations. The loss function utilized 
was Cross Entropy. 

Based on these settings, the proposed model was trained on the CIFAR-10 dataset. To evaluate the 
training process, loss and accuracy curves were plotted. Figure 4(a) depicts the loss curve, showcasing 
the reduction in loss over epochs. Figure 4(b), on the other hand, displays the accuracy curve, illustrating 
the improvement in model performance as training progresses. These curves provide insights into the 
training dynamics and help assess the model's learning efficiency. 

 
(a) The training loss curve.            (b) The training accuracy curve. 

Figure 4: The training curves of the proposed method on CIFAR-10 dataset. 
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3.3 Evaluation Results 

For multi-class image classification tasks, the performance of the model is mainly evaluated by the 
following metrics: 

 Test accuracy represents the percentage of correctly predicted samples across total testing samples 
which can be calculated as: 

Test accuracy = Correctly predicted samples
Total testing samples

× 100%.                (11) 

 Params is used to measure the size of the model, which reflects the complexity of the model and 
has a significant impact on model's generalization and computation requirements. 

 Confusion matrix is usually used to evaluate the performance of classifiers. It provides visual 
representation of the classification performance and shows the relationship between true labels and 
predicted labels in the form of the matrix. 

To validate the superiority of the proposed method in image classification, we conducted experiments 
using various classic models, including VGG-16, VGG-19, and ResNet-34, all adapted to handle images 
with a resolution of 32×32. We trained these models using the same dataset and settings as our proposed 
method, and evaluated their performance using the aforementioned metrics. 

Table 1 presents a comparison of the test accuracy and params of different methods. Notably, CreINN 
[15], a recent method proposed in 2025 specifically for CIFAR-10 image classification, is also included 
for comparison. It is evident from the table that our proposed method achieves the highest test accuracy 
of 88.97% while having the smallest params. Figure 5 displays the confusion matrix of our proposed 
method, demonstrating its ability to accurately recognize a wide range of targets in natural images. 

Table 1: The performance of each method. 

Method Test accuracy (%) Params (M) 
VGG-16 79.75 56.18 
VGG-19 81.13 76.45 

ResNet-34 79.84 81.18 
CreINN 85.03 47.21 

Proposed 88.97 43.39 
The confusion matrix in Figure 5 provides a visual representation of the classification performance 

of our proposed method. Each row of the matrix represents the instances in an actual class, while each 
column represents the instances predicted to be in that class. The diagonal elements show the number of 
correctly classified instances, while off-diagonal elements indicate misclassifications. The high values 
along the diagonal and the relatively low values off-diagonal indicate that our method is effective in 
distinguishing between different classes, thereby confirming its superior performance in image 
classification tasks. 

 
Figure 5: The confusion matrix of the proposed method. 
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To assess the efficacy of each module introduced in this paper, we conducted a series of ablation 
experiments. Our baseline model consists of replacing the adaptive interaction module (AIM) with a 
traditional 3×3 convolution module, and removing both the cross attention module (CAM) and residual 
connections from the proposed architecture. The results of these ablation experiments are presented in 
Table 2. The baseline method, denoted as Method A, achieves a test accuracy of 77.83% with a params 
of 17.95M. 

Table 2: The results of ablation experiments. 

Method AIM CAM Test accuracy (%) Params (M) 
A   77.83 17.95 
B √  84.46 41.88 
C √ √ 88.97 43.39 

In the next experiment, denoted as Method B, we replaced the traditional convolution module before 
each maxpooling layer with the AIM. This modification led to a notable 6.63% increase in test accuracy, 
albeit with a corresponding 23.93M increase in params. The incorporation of the AIM allows the network 
to capture a more extensive and richer spatial receptive field, thereby enhancing the overall feature 
representations. This demonstrates the significant contribution of the AIM to the network's performance. 

Finally, we evaluated the proposed model, denoted as Method C, which includes the addition of the 
CAM and residual connections after each AIM, in comparison to Method B. The integration of the CAM 
resulted in a further 4.51% increase in test accuracy, with only a modest 1.51M increase in params. These 
results underscore the effectiveness of the CAM in capturing spatial dependency relationships and 
improving the network's attention to target features. Overall, the ablation experiments provide 
compelling evidence of the contributions of each module to the network's performance and robustness. 

4. Conclusion 

To address the challenge of insufficient classification accuracy in image recognition, this paper 
introduces a CNN-based method that leverages adaptive interaction and cross attention mechanisms. The 
adaptive interaction module effectively enlarges the receptive field of the network and enhances the 
discriminative representation of features, while the cross attention module efficiently establishes spatial 
dependency relationships among features and improves the network's ability to focus on targets. By 
addressing the limitations of other classification models in capturing spatial contextual information, the 
proposed method achieves the highest test accuracy of 88.97% on the CIFAR-10 dataset. This 
achievement underscores the method's capability in recognizing advanced semantic features of various 
targets, thereby contributing to the advancement of image recognition technology. 
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