
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 13: 55-61, DOI: 10.25236/AJCIS.2022.051309

Published by Francis Academic Press, UK
-55-

Credit Card Fraud Detection Based on Random
Forest Model

Peilin Li

College of Art and Science, The Ohio State University, Columbus, Ohio, 43210, United State

Abstract: This paper uses a classifier named random forest to detect credit card fraud. Credit card fraud
is one of the main issues in the economic industry. To construct a credit card fraud detection system, a
certain amount of samples is required. In this paper, a dataset containing 284,807 credit card
transactions is used. This dataset has gone through the PCA transformation and includes 492 frauds out
of 284,807 transactions. Based on the huge amount of data and imbalanced samples, this paper
compresses the dataset and uses the synthetic minority over-sampling technique (SMOTE) to address the
problem of imbalanced samples. Also, in this paper, we use random forest as a classification model while
constructing the fraud detection system/method.

Keywords: Credit Card Fraud, Random Forest, SMOTE, Prediction Model, Data Science

1. Introduction

Credit card fraud has been a common problem for years. The popularity of online payment and other
card-not-present payment methods provides people with much more convenience. However, it also leads
to various kinds of credit card fraud [1][4]. Therefore, the number of credit card fraud has grown rapidly
with the rise of online payment over the past few years. An industry research paper estimates that
merchants will lose around $130 billion to fraud between 2018 and 2023 [5]. Other than that, the
fraudulent activity will also affect the cardholders and the acquirers/issuers (banks). For cardholders,
their cards are stolen, which means, at the same time, their information is also leaked. And information
leakage may cause more potential cybercrimes such as identity theft and hacking [7]. However, compared
to cardholders, banks seem to be the ones who bear the cost of the fraud. As long as the cardholder reports
a suspicious charge and the fraud has been confirmed, the bank is responsible to issue a chargeback to
the cardholder. The cost of the issued chargeback and the cost of preventing credit card fraud become
the main cost that the bank has to incur [6]. In this case, it is necessary to eliminate credit card fraud. One
of the most effective ways to prevent credit card fraud would be credit card fraud detection. As long as
the fraud is detectable, we are able to stop it from the very beginning.

2. Sample Description

Figure 1: Number of transactions for class 0 and class 1

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 13: 55-61, DOI: 10.25236/AJCIS.2022.051309

Published by Francis Academic Press, UK
-56-

To construct a fraud detection method, a large amount of data will be needed. In this paper, we would
adopt a set of data that contains credit card transactions made by European cardholders as an example.
This dataset includes 284,807 credit card transactions and 492 transactions were considered credit card
fraud. There is a huge difference between the number of normal transactions and fraudulent transactions,
which means the dataset is highly imbalanced (shown in Fig. 1). Each transaction contains 30 numerical
features and 1 binary feature. And each feature has gone through the PCA transformation except for the
feature “Time”, which refers to the second elapsed between each transaction, and the feature “Amount”,
which refers to the transaction amount. To differentiate the normal transaction and fraudulent transaction,
we would take value 1 in case of fraud and 0 otherwise [2].

To check the independence of each data, we arbitrarily choose two feature names V2 and V3 from
the database and plot the distribution for each feature (shown as Fig. 2, Fig. 3.).

Both feature’s distributions are nearly normal distributions. That also indicates that the PCA
transformation has reduced the dimensions of data and made variables independent.

Figure 2: The distribution plot for vector 13

Figure 3: The distribution plot for vector 2

Before we train the model, we first need to split the data into two segments: the training set and the
testing set. In this paper, we would use the train_test_split() function in the sklearn.model_selection
library in Python [10]. We set the test size as 0.3, which means we randomly select 70% of the dataset
as a training set and the rest of the dataset (30% of the dataset) as a testing set. Therefore, we have a
training set containing 199346 samples and a testing set containing 85443 samples. In the training set,
there are 199019 negative samples and 345 positive samples, which means the training set is highly
imbalanced.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 13: 55-61, DOI: 10.25236/AJCIS.2022.051309

Published by Francis Academic Press, UK
-57-

2.1 SMOTE

It is not appropriate to directly use a highly imbalanced dataset as the input of our model, because an
imbalanced dataset will lead to many unexpected behaviors. For example, it is highly possible to
misclassify positive samples (minority class) as negative samples (majority class) due to the huge
difference between the number of these two classes [8]. To deal with the problem of imbalanced data, in
this paper, we applied the synthetic minority over-sampling technique (SMOTE) to the dataset.

There are two approaches to deal with the problems of class imbalance. One is to assign different
costs to the training samples, the other one is to resample the whole dataset: oversample the minority
class and/or sample the majority class. SMOTE is an approach of oversampling the minority class by
generating synthetic samples [8]. To generate synthetic samples, first, neighbors from the k nearest
neighbors would be randomly chosen based on the needed number of synthetic samples and one sample
would be generated in the direction of each of the chosen neighbors. Then calculate the difference
between the feature vector(sample) under consideration and its neighbor. Multiply the difference by a
random number between 0 and 1 and add it to the feature vector under consideration. In this case, SMOTE
can improve the accuracy of the classifier [8]. Other than this, it has also been proved that the combination
of SMOTE and under-sampling performs better than plain under-sampling [8].

In this paper, we also apply SMOTE to address the problem of the imbalanced dataset. As the original
dataset has been divided into a training set and a validation set, we would apply SMOTE to the training
set before the training process starts. As shown in Fig. 4, there are 199019 normal samples and 345
abnormal samples in the training set. Then we invoke the SMOTE() method from the imbalanced-learn
library, which is an implementation of SMOTE in Python[9] As synthetic samples have been created,
now we have the 199019 abnormal data as well(as shown in Fig. 5). And this training set is ready to go
through the training process at this point.

Figure 4: Number of transactions for class 0 and class 1 before SMOTE

Figure 5: Number of transactions for class 0 and class 1 after SMOTE

3. Model Construction

In this paper, we used a random forest classifier for the model training process.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 13: 55-61, DOI: 10.25236/AJCIS.2022.051309

Published by Francis Academic Press, UK
-58-

3.1 Decision Tree & Random Forest

The main concept of the random forest is built based on the concept of the decision tree classifier.
Decision tree classifier (DTC) is an approach to multi-stage decision-making [11]. Basically, the main
idea of DTC is to partition a set of entities into smaller classes based on the selected partition rule [14].

A decision tree consists of a set of nodes and a set of edges. Nodes are subdivided into internal nodes,
leaf, and root: a node that doesn't have a proper descendant is called a leaf (or a terminal), which contains
a class label, a node that has no edge enter is called the root of the tree, and all the other nodes are internal
nodes. Each internal node represents a “supporting attribute” that would be used for node partition. And
each node represents the value of the supporting attribute used as criteria to classify objects. To calculate
an appropriate value for each supporting attribute during classification, we would also need to choose
criteria such as Gini impurity or entropy which could be used to measure the quality of a split. In this
paper, we would use the entropy introduced by Shannon [12] as the criterion. The formulas of entropy
and information gain are shown as:

𝐸𝐸 = −∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 log2 𝑝𝑝𝑖𝑖 (1)

𝐼𝐼 = 𝐸𝐸parent −∑
|𝑉𝑉𝑖𝑖|

|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|
𝑐𝑐
𝑖𝑖=1 𝐸𝐸𝑖𝑖 (2)

where E is the entropy, I is the information gain, pi is the fraction of class i objects at the given node,
Vi is the possible number of class i objects, and data is the total number of samples. Entropy is a measure
of the uncertainty of the classification result, and the value of the information gain represent the
difference of the entropy between the lower level and the upper level [13][14]. For each level/attribute,
we would choose the value with the lowest entropy, i.e., the largest information gain, as the criteria to
split the dataset into two subsets. The process of drawing the decision tree is iterative. It would first
choose the supporting attribute which has the largest information gain as the root node and then split the
dataset into two subsets based on the value of the attribute. Then repeat the previous steps until there is
no other available supporting attribute or the entropy is null [15].

Decision tree has proven its value in classification. However, there are still some possible drawbacks
to the decision tree. For example, we can’t simultaneously optimize both accuracy and efficiency [11].
Random Forest was invented aiming at improving classification accuracy. Random forest is an ensemble
classifier that produces multiple decision trees and concludes the classification result based on the results
of the decision trees [16]. The procedure of random forest is: first, randomly select samples from the
training set; then use the selected samples to generate a decision tree as mentioned above; repeat the first
two steps N times so that multiple decision trees can be created, where N is the expected number of the
decision trees. As the random forest classifier has been built, the most popular result/class among the
decision trees would be considered the final result of the classifier [16]. In this paper, we would use the
RandomForestClassifier() method from the scikit learn to generate a classifier name “classifier” [17].
Then we would set the number of trees in the forest as 1000, and the criterion as entropy. Then we would
use the fit() method to build a forest of trees using the specific training set generated before [17]. At this
point, we now have a random first containing 1000 independent decision trees using entropy as the
criterion for node partition.

4. Model Evaluation

4.1 ROC

As the model has been constructed, we would test the model and measure the classifier performance.
The receiver operator characteristics (ROC) graph is one of the most intuitive metrics for evaluating and
comparing the algorithm and it has been used in machine learning since around 1989 [18]. ROC graphs
are two-dimension graphs which plot the true positive (TP) rate on the y-axis and the false positive (FP)
rate on the x-axis [18]. In this case, the results of the classifier can be divided into four classes: “if the
instance is positive and it is classified as positive, it is counted as a true positive (TP); if it is classified
as negative, it is counted as a false negative (FN). If the instance is negative and it is classified as negative,
it is counted as a true negative (TN); if it is classified as positive, it is counted as a false positive (FP).”
[19][21]. Therefore, while evaluating the performance of the classifier, we usually consider the true
positives as benefits and the false negatives as costs. And the formula for TP rate and FP rate can be
denoted as:[18]

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 13: 55-61, DOI: 10.25236/AJCIS.2022.051309

Published by Francis Academic Press, UK
-59-

TP rate ≈ Positives correctly classified
Total positives

 (3)

FP rate ≈ Negatives incorrectly classified
Total negatives

 (4)

In general, a ROC graph depicts the relative tradeoff between the TP rate and the FP rate [18]. A
result of a discrete classifier such as the decision tree classifier is in turn corresponding to one ROC point.
As more results are generated and we connect all the ROC points, the ROC “curve” will be generated.
Each ROC curve generated from a finite dataset is a step function, but it would approach a true curve as
the number of samples increases. Therefore, based on the composition of the ROC graph, a “more
northwest” ROC curve usually corresponds to a better classifier since it has a lower expected cost [18].

4.2 AUC

ROC graphs can be used for depicting the performance of a classifier, but it is still hard to tell the
difference between the classifiers by comparing the ROC curve. In this case, a scalar metric would be a
better choice. Therefore, instead of comparing the ROC curve, we would compare the area under the
ROC curve (AUC) [20]. AUC is the portion of the area of the ROC space. Therefore, the value of AUC
is always between 0 and 1 [18]. The value of AUC also represents “the probability that the classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative instance.” [18]. In
general, a realistic classifier should have an AUC greater than 0.5. While evaluating the performance of
a classifier or comparing two classifiers, a classifier with greater AUC would be considered as the
classifier that has better performance.

In this paper, we would use ROC and AUC to test the performance of the model. We would first use
the plot_roc_curve() method from scikit learn [19] to plot the ROC curve and Fig.6 shows the ROC curve
for the dataset.

Figure 6: ROC curve of the model

As shown in Fig. 6, the ROC curve is close to the top-left corner and AUC is approximately 0.97,
which is higher than 0.5 and close to 1. Therefore, based on the result of the ROC graph and the value of
AUC. we can conclude that the classifier has a relatively good performance.

4.3 Precision, Recall, F-1 Score

Except for the ROC graph and AUC, we would also use other classifier performance metrics,
including precision, recall, and F-1 score, to evaluate the classifier.

Precision, which is also known as the positive predictive value (PPV), and recall are common metrics
for classifier evaluation [21]. The definitions of precision and recall are shown below:

Precision = tp
tp+fp

 (5)

Recall = tp
tp+fn

 (6)

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 13: 55-61, DOI: 10.25236/AJCIS.2022.051309

Published by Francis Academic Press, UK
-60-

According to the definitions of precision and recall, we can see that there is a slight difference
between precision and recall. Precision measures the proportion of the samples classified as positive that
are truly positive but recall measures the proportion of the positive samples that are correctly labeled
[21]. The greater the values of these two metrics, the better the classifier. In this paper, we would invoke
the precision_score() method [22] and recall_score() method [23] from scikit learn to calculate the
precision and recall of the classifier. And the precision score is approximately 0.95 and the recall score
is approximately 0.76.

F-1 score(F-measure) is another classifier performance metric based on precision and recall, as shown
below [21]:

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (7)

Based on the definition of the F-1 score, when the values of both recall and precision are 1, i.e., the
classifier performs perfectly, the F-1 score will be 1 which is also the maximum value for the F-1 score.
Therefore, the range of the F-1 score is between 0 and 1. The greater the F-1 score is, the better the
classifier. In this paper, we would invoke the f1_score() method from scikit learn [24] and the returned
f-1 score of the classifier is approximately 0.85.

5. Conclusions

Concerning the increasing cost of credit card fraud, it is our belief that a credit card fraud detection
system can provide an effective way to prevent credit card fraud. Based on the result of the model
evaluation, most of the classification evaluation metrics are relatively high. And that shows this model
can effectively detect credit card fraud. Therefore, banks, as the one that bears most of the cost of credit
card fraud, and merchants would benefit from the model since it could avoid credit card fraud by
detecting the credit card fraud from the very beginning and warning the cardholders, and therefore,
decrease the number of credit card fraud. But we still have a further way to go. This model still has some
limitations. For example, since the dataset used for model training is limited, it is set to detect the credit
card fraud that has been observed or defined. However, nowadays, with the rapid development of
information technology, more and more new credit card frauds occur. Due to the limited training samples,
the model may not be able to detect other new kinds of fraud as time pass. Other than this, this model
could only detect credit card fraud when it already happened because the dataset only shows the features
of transactions. But if we include more features such as the consumption habits of the customers, the
model can detect what kinds of customers would be more likely to encounter credit card fraud. And
therefore, we can even prevent credit card fraud before it happens. Data collection is a worldwide
problem for prediction model constructions. Therefore, we would collect more data and more features
about credit card fraud to improve the performance of this credit card fraud detection model if possible.

References

[1] Delamaire, Linda, Hussein Abdou, and John Pointon. "Credit card fraud and detection techniques:
a review." Banks and Bank systems 4.2 (2009): 57-68.
[2] “Credit Card Fraud Detection.” Google Search, Google, https://www.google. com.hk/search?q
=citation%2Bgenerator%2BMLA&newwindow=1&ei=w1dGY6CZGrfN2roP9eyh0AY&ved=0ahUKE
wjghqfFgdr6AhW3plYBHXV2CGoQ4dUDCA4&uact=5&oq=citation%2Bgenerator%2BMLA&gs_lp=
Egdnd3Mtd2l6uAED-AEBMgUQABiABDIFEAAYgAQyBBAAGB4yBBAAGB4yBBAAGB4yBBAAGB4y
BBAAGB4yBBAAGB4yBBAAGB4yBBAAGB7CAgoQABhHGNYEGLADwgIEEAAYQ5AGCkjfDVCDB
FiPC3ABeAHIAQCQAQCYAYQEoAH5CaoBBzMtMS4xLjHiAwQgTRgB4gMEIEEYAOIDBCBGGACI
BgE&sclient=gws-wiz.
[3] Browne, Michael W. "Cross-validation methods." Journal of mathematical psychology 44.1 (2000):
108-132.
[4] Barker, Katherine J., et al. "Credit Card Fraud: Awareness and Prevention." Journal of Financial
Crime, vol. 15, no. 4, 2008, pp. 398-410. HeinOnline, https://heinonline-org.proxy.lib.ohio-state. edu/
HOL/P?h=hein.journals/jfc15&i=398.
[5] S. T. King, N. Scaife, P. Traynor, Z. Abi Din, C. Peeters and H. Venugopala, "Credit Card Fraud Is
a Computer Security Problem," in IEEE Security & Privacy, vol. 19, no. 2, pp. 65-69, March-April 2021,
doi: 10.1109/MSEC.2021.3050247.
[6] Bhatla, Tej Paul, Vikram Prabhu, and Amit Dua. "Understanding credit card frauds." Cards business
review 1.6 (2003): 1-15.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 13: 55-61, DOI: 10.25236/AJCIS.2022.051309

Published by Francis Academic Press, UK
-61-

[7] Chevers, Delroy A. "The impact of cybercrime on e-banking: A proposed model." CONF-IRM. 2019.
[8] Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." Journal of artificial
intelligence research 16 (2002): 321-357.
[9] “Smote#.” SMOTE - Version 0.9.1,https://imbalanced-learn.org/stable/references/generated/
imblearn.over_sampling.SMOTE.html.
[10] “Sklearn.model_selection.train_test_split.” Scikit, https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.train_test_split.html.
[11] S. R. Safavian and D. Landgrebe, "A survey of decision tree classifier methodology," in IEEE
Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 660-674, May-June 1991, doi:
10.1109/21.97458.
[12] Shannon, Claude Elwood. "A mathematical theory of communication." The Bell system technical
journal 27.3 (1948): 379-423.
[13] Rényi, Alfréd. "On measures of entropy and information." Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability. Vol. 1. No. 547-561. 1961.
[14] Breiman, L. (1984). Classification And Regression Trees (1st ed.). Routledge. https://doi. org/
10.1201/9781315139470
[15] Li, Xiang, and Christophe Claramunt. "A spatial entropy‐based decision tree for classification of
geographical information." Transactions in GIS 10.3 (2006): 451-467.
[16] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). https://doi.org /10.1023/ A:
1010933404324
[17] “Sklearn.ensemble.randomforestclassifier.” Scikit, https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html.
[18] Fawcett, Tom. "An introduction to ROC analysis." Pattern recognition letters 27.8 (2006): 861-
874.
[19] “Sklearn.metrics.plot_roc_curve.” Scikit, https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.plot_roc_curve.html.
[20] N. Seliya, T. M. Khoshgoftaar and J. Van Hulse, "A Study on the Relationships of Classifier
Performance Metrics," 2009 21st IEEE International Conference on Tools with Artificial Intelligence,
2009, pp. 59-66, doi: 10.1109/ICTAI. 2009. 25.
[21] Davis, Jesse, and Mark Goadrich. "The relationship between Precision-Recall and ROC curves."
Proceedings of the 23rd international conference on Machine learning. 2006.
[22] “Sklearn.metrics.precision_score.” Scikit, https://scikit-learn.org/stable/modules/ generated/
sklearn.metrics.precision_score.html.
[23] “Sklearn.metrics.recall_score.” Scikit, https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.recall_score.html.
[24] “Sklearn.metrics.f1_score.” Scikit, https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.f1_score.html.

