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Abstract: This paper uses a classifier named random forest to detect credit card fraud. Credit card fraud 
is one of the main issues in the economic industry. To construct a credit card fraud detection system, a 
certain amount of samples is required. In this paper, a dataset containing 284,807 credit card 
transactions is used. This dataset has gone through the PCA transformation and includes 492 frauds out 
of 284,807 transactions. Based on the huge amount of data and imbalanced samples, this paper 
compresses the dataset and uses the synthetic minority over-sampling technique (SMOTE) to address the 
problem of imbalanced samples. Also, in this paper, we use random forest as a classification model while 
constructing the fraud detection system/method. 
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1. Introduction 

Credit card fraud has been a common problem for years. The popularity of online payment and other 
card-not-present payment methods provides people with much more convenience. However, it also leads 
to various kinds of credit card fraud [1][4]. Therefore, the number of credit card fraud has grown rapidly 
with the rise of online payment over the past few years. An industry research paper estimates that 
merchants will lose around $130 billion to fraud between 2018 and 2023 [5]. Other than that, the 
fraudulent activity will also affect the cardholders and the acquirers/issuers (banks). For cardholders, 
their cards are stolen, which means, at the same time, their information is also leaked. And information 
leakage may cause more potential cybercrimes such as identity theft and hacking [7]. However, compared 
to cardholders, banks seem to be the ones who bear the cost of the fraud. As long as the cardholder reports 
a suspicious charge and the fraud has been confirmed, the bank is responsible to issue a chargeback to 
the cardholder. The cost of the issued chargeback and the cost of preventing credit card fraud become 
the main cost that the bank has to incur [6]. In this case, it is necessary to eliminate credit card fraud. One 
of the most effective ways to prevent credit card fraud would be credit card fraud detection. As long as 
the fraud is detectable, we are able to stop it from the very beginning.  

2. Sample Description 

 
Figure 1: Number of transactions for class 0 and class 1 
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To construct a fraud detection method, a large amount of data will be needed. In this paper, we would 
adopt a set of data that contains credit card transactions made by European cardholders as an example. 
This dataset includes 284,807 credit card transactions and 492 transactions were considered credit card 
fraud. There is a huge difference between the number of normal transactions and fraudulent transactions, 
which means the dataset is highly imbalanced (shown in Fig. 1). Each transaction contains 30 numerical 
features and 1 binary feature. And each feature has gone through the PCA transformation except for the 
feature “Time”, which refers to the second elapsed between each transaction, and the feature “Amount”, 
which refers to the transaction amount. To differentiate the normal transaction and fraudulent transaction, 
we would take value 1 in case of fraud and 0 otherwise [2]. 

To check the independence of each data, we arbitrarily choose two feature names V2 and V3 from 
the database and plot the distribution for each feature (shown as Fig. 2, Fig. 3.).  

Both feature’s distributions are nearly normal distributions. That also indicates that the PCA  
transformation has reduced the dimensions of data and made variables independent. 

 
Figure 2: The distribution plot for vector 13 

 
Figure 3: The distribution plot for vector 2 

Before we train the model, we first need to split the data into two segments: the training set and the 
testing set. In this paper, we would use the train_test_split() function in the sklearn.model_selection 
library in Python [10]. We set the test size as 0.3, which means we randomly select 70% of the dataset 
as a training set and the rest of the dataset (30% of the dataset) as a testing set. Therefore, we have a 
training set containing 199346 samples and a testing set containing 85443 samples. In the training set, 
there are 199019 negative samples and 345 positive samples, which means the training set is highly 
imbalanced. 
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2.1 SMOTE 

It is not appropriate to directly use a highly imbalanced dataset as the input of our model, because an 
imbalanced dataset will lead to many unexpected behaviors. For example, it is highly possible to 
misclassify positive samples (minority class) as negative samples (majority class) due to the huge 
difference between the number of these two classes [8]. To deal with the problem of imbalanced data, in 
this paper, we applied the synthetic minority over-sampling technique (SMOTE) to the dataset. 

There are two approaches to deal with the problems of class imbalance. One is to assign different 
costs to the training samples, the other one is to resample the whole dataset: oversample the minority 
class and/or sample the majority class. SMOTE is an approach of oversampling the minority class by 
generating synthetic samples [8]. To generate synthetic samples, first, neighbors from the k nearest 
neighbors would be randomly chosen based on the needed number of synthetic samples and one sample 
would be generated in the direction of each of the chosen neighbors. Then calculate the difference 
between the feature vector(sample) under consideration and its neighbor. Multiply the difference by a 
random number between 0 and 1 and add it to the feature vector under consideration. In this case, SMOTE 
can improve the accuracy of the classifier [8]. Other than this, it has also been proved that the combination 
of SMOTE and under-sampling performs better than plain under-sampling [8]. 

In this paper, we also apply SMOTE to address the problem of the imbalanced dataset. As the original 
dataset has been divided into a training set and a validation set, we would apply SMOTE to the training 
set before the training process starts. As shown in Fig. 4, there are 199019 normal samples and 345 
abnormal samples in the training set.  Then we invoke the SMOTE() method from the imbalanced-learn 
library, which is an implementation of SMOTE in Python[9] As synthetic samples have been created, 
now we have the 199019 abnormal data as well(as shown in Fig. 5). And this training set is ready to go 
through the training process at this point. 

 
Figure 4: Number of transactions for class 0 and class 1 before SMOTE 

 
Figure 5: Number of transactions for class 0 and class 1 after SMOTE 

3. Model Construction 

In this paper, we used a random forest classifier for the model training process.  
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3.1 Decision Tree & Random Forest 

The main concept of the random forest is built based on the concept of the decision tree classifier. 
Decision tree classifier (DTC) is an approach to multi-stage decision-making [11]. Basically, the main 
idea of DTC is to partition a set of entities into smaller classes based on the selected partition rule [14].  

A decision tree consists of a set of nodes and a set of edges. Nodes are subdivided into internal nodes, 
leaf, and root: a node that doesn't have a proper descendant is called a leaf (or a terminal), which contains 
a class label, a node that has no edge enter is called the root of the tree, and all the other nodes are internal 
nodes. Each internal node represents a “supporting attribute” that would be used for node partition. And 
each node represents the value of the supporting attribute used as criteria to classify objects. To calculate 
an appropriate value for each supporting attribute during classification, we would also need to choose 
criteria such as Gini impurity or entropy which could be used to measure the quality of a split. In this 
paper, we would use the entropy introduced by Shannon [12] as the criterion. The formulas of entropy 
and information gain are shown as:  

𝐸𝐸 = −∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 log2 𝑝𝑝𝑖𝑖      (1) 

𝐼𝐼 = 𝐸𝐸parent −∑
|𝑉𝑉𝑖𝑖|

|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|
𝑐𝑐
𝑖𝑖=1 𝐸𝐸𝑖𝑖      (2) 

where E is the entropy, I is the information gain, pi is the fraction of class i objects at the given node, 
Vi is the possible number of class i objects, and data is the total number of samples. Entropy is a measure 
of the uncertainty of the classification result, and the value of the information gain represent the 
difference of the entropy between the lower level and the upper level [13][14]. For each level/attribute, 
we would choose the value with the lowest entropy, i.e., the largest information gain, as the criteria to 
split the dataset into two subsets. The process of drawing the decision tree is iterative. It would first 
choose the supporting attribute which has the largest information gain as the root node and then split the 
dataset into two subsets based on the value of the attribute. Then repeat the previous steps until there is 
no other available supporting attribute or the entropy is null [15]. 

Decision tree has proven its value in classification. However, there are still some possible drawbacks 
to the decision tree. For example, we can’t simultaneously optimize both accuracy and efficiency [11]. 
Random Forest was invented aiming at improving classification accuracy. Random forest is an ensemble 
classifier that produces multiple decision trees and concludes the classification result based on the results 
of the decision trees [16]. The procedure of random forest is: first, randomly select samples from the 
training set; then use the selected samples to generate a decision tree as mentioned above; repeat the first 
two steps N times so that multiple decision trees can be created, where N is the expected number of the 
decision trees. As the random forest classifier has been built, the most popular result/class among the 
decision trees would be considered the final result of the classifier [16]. In this paper, we would use the 
RandomForestClassifier() method from the scikit learn to generate a classifier name “classifier” [17]. 
Then we would set the number of trees in the forest as 1000, and the criterion as entropy. Then we would 
use the fit() method to build a forest of trees using the specific training set generated before [17]. At this 
point, we now have a random first containing 1000 independent decision trees using entropy as the 
criterion for node partition. 

4. Model Evaluation 

4.1 ROC 

As the model has been constructed, we would test the model and measure the classifier performance. 
The receiver operator characteristics (ROC) graph is one of the most intuitive metrics for evaluating and 
comparing the algorithm and it has been used in machine learning since around 1989 [18]. ROC graphs 
are two-dimension graphs which plot the true positive (TP) rate on the y-axis and the false positive (FP) 
rate on the x-axis [18]. In this case, the results of the classifier can be divided into four classes: “if the 
instance is positive and it is classified as positive, it is counted as a true positive (TP); if it is classified 
as negative, it is counted as a false negative (FN). If the instance is negative and it is classified as negative, 
it is counted as a true negative (TN); if it is classified as positive, it is counted as a false positive (FP).” 
[19][21]. Therefore, while evaluating the performance of the classifier, we usually consider the true 
positives as benefits and the false negatives as costs. And the formula for TP rate and FP rate can be 
denoted as:[18] 
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TP rate ≈ Positives correctly classified
Total positives

      (3) 

FP rate ≈ Negatives incorrectly classified
Total negatives

      (4) 

In general, a ROC graph depicts the relative tradeoff between the TP rate and the FP rate [18]. A 
result of a discrete classifier such as the decision tree classifier is in turn corresponding to one ROC point. 
As more results are generated and we connect all the ROC points, the ROC “curve” will be generated. 
Each ROC curve generated from a finite dataset is a step function, but it would approach a true curve as 
the number of samples increases. Therefore, based on the composition of the ROC graph, a “more 
northwest” ROC curve usually corresponds to a better classifier since it has a lower expected cost [18]. 

4.2 AUC 

ROC graphs can be used for depicting the performance of a classifier, but it is still hard to tell the 
difference between the classifiers by comparing the ROC curve. In this case, a scalar metric would be a 
better choice. Therefore, instead of comparing the ROC curve, we would compare the area under the 
ROC curve (AUC) [20]. AUC is the portion of the area of the ROC space. Therefore, the value of AUC 
is always between 0 and 1 [18]. The value of AUC also represents “the probability that the classifier will 
rank a randomly chosen positive instance higher than a randomly chosen negative instance.” [18]. In 
general, a realistic classifier should have an AUC greater than 0.5. While evaluating the performance of 
a classifier or comparing two classifiers, a classifier with greater AUC would be considered as the 
classifier that has better performance.  

In this paper, we would use ROC and AUC to test the performance of the model. We would first use 
the plot_roc_curve() method from scikit learn [19] to plot the ROC curve and Fig.6 shows the ROC curve 
for the dataset.  

 
Figure 6: ROC curve of the model 

As shown in Fig. 6, the ROC curve is close to the top-left corner and AUC is approximately 0.97, 
which is higher than 0.5 and close to 1. Therefore, based on the result of the ROC graph and the value of 
AUC. we can conclude that the classifier has a relatively good performance.  

4.3 Precision, Recall, F-1 Score 

Except for the ROC graph and AUC, we would also use other classifier performance metrics, 
including precision, recall, and F-1 score, to evaluate the classifier.  

Precision, which is also known as the positive predictive value (PPV), and recall are common metrics 
for classifier evaluation [21]. The definitions of precision and recall are shown below: 

Precision =  tp
tp+fp

      (5) 

Recall =  tp
tp+fn

      (6) 
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According to the definitions of precision and recall, we can see that there is a slight difference 
between precision and recall. Precision measures the proportion of the samples classified as positive that 
are truly positive but recall measures the proportion of the positive samples that are correctly labeled 
[21]. The greater the values of these two metrics, the better the classifier. In this paper, we would invoke 
the precision_score() method [22] and recall_score() method [23] from scikit learn to calculate the 
precision and recall of the classifier. And the precision score is approximately 0.95 and the recall score 
is approximately 0.76. 

F-1 score(F-measure) is another classifier performance metric based on precision and recall, as shown 
below [21]: 

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

      (7) 

Based on the definition of the F-1 score, when the values of both recall and precision are 1, i.e., the 
classifier performs perfectly, the F-1 score will be 1 which is also the maximum value for the F-1 score. 
Therefore, the range of the F-1 score is between 0 and 1. The greater the F-1 score is, the better the 
classifier. In this paper, we would invoke the f1_score() method from scikit learn [24] and the returned 
f-1 score of the classifier is approximately 0.85. 

5. Conclusions 

Concerning the increasing cost of credit card fraud, it is our belief that a credit card fraud detection 
system can provide an effective way to prevent credit card fraud.  Based on the result of the model 
evaluation, most of the classification evaluation metrics are relatively high. And that shows this model 
can effectively detect credit card fraud. Therefore, banks, as the one that bears most of the cost of credit 
card fraud, and merchants would benefit from the model since it could avoid credit card fraud by 
detecting the credit card fraud from the very beginning and warning the cardholders, and therefore, 
decrease the number of credit card fraud. But we still have a further way to go.  This model still has some 
limitations. For example, since the dataset used for model training is limited, it is set to detect the credit 
card fraud that has been observed or defined. However, nowadays, with the rapid development of 
information technology, more and more new credit card frauds occur. Due to the limited training samples, 
the model may not be able to detect other new kinds of fraud as time pass. Other than this, this model 
could only detect credit card fraud when it already happened because the dataset only shows the features 
of transactions. But if we include more features such as the consumption habits of the customers, the 
model can detect what kinds of customers would be more likely to encounter credit card fraud. And 
therefore, we can even prevent credit card fraud before it happens. Data collection is a worldwide 
problem for prediction model constructions. Therefore, we would collect more data and more features 
about credit card fraud to improve the performance of this credit card fraud detection model if possible. 
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