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Abstract: With the rapid development of transportation systems, road safety and traffic management 

have become crucial. Efficient traffic sign detection and recognition enhance traffic flow and safety. This 

paper proposes a Traffic Sign Tiny Detector (TSTD) algorithm to improve the performance of existing 

small object detection models. The TSTD algorithm utilizes efficientFormerv2, specifically designed for 

small objects, and optimizes the loss function with a normalized Wasserstein distance loss. It also 

employs the C2f_DBB module to replace traditional downsampling, preventing excessive loss of small 

object information. EfficientFormerv2 offers higher efficiency and lower computational cost, 

significantly reducing the model's complexity and training time while maintaining high accuracy. The 

C2f_DBB module, with its improved feature fusion and dual-branch structure, enhances the model's 

ability to detect small objects, ensuring high-precision recognition of tiny traffic signs. Extensive 

comparative experiments verify the model's advantages in traffic sign detection. Results show that TSTD 

significantly improves key performance metrics, such as mean Average Precision (mAP), over baseline 

models. In summary, the proposed TSTD can more accurately detect traffic signs, contributing to 

advancements in intelligent traffic management and improving road safety and traffic efficiency. 
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1. Introduction 

Accurate traffic sign recognition is crucial for road safety in modern intelligent transportation systems. 

As urbanization accelerates and traffic networks become more complex, timely and accurate road 

information for drivers is essential. Small target traffic signs, such as those at a distance or partially 

obscured, play a key role in maintaining smooth traffic flow and preventing accidents. However, 

detecting these signs under various weather and lighting conditions presents significant challenges, 

especially when located at the road edge or in complex backgrounds.  

Traditional traffic sign detection techniques rely on manual feature extraction and simple image 

processing, which perform poorly with small target traffic signs and in complex environments. Early 

systems may only be effective under specific lighting conditions or may struggle to distinguish signs 

from cluttered backgrounds. With the development of deep learning technology, improving the accuracy 

and efficiency of small object detection using advanced computer vision algorithms has become a 

research hotspot. These algorithms can automatically learn and extract complex features from images, 

greatly improving detection accuracy and reliability.  

However, despite their excellent performance in laboratory conditions, challenges remain in practical 

applications. These advanced algorithms often require significant computational resources, which may 

be difficult to meet in scenarios requiring fast real-time processing, particularly with video streams or 

large-scale real-time traffic monitoring data. Additionally, the high real-time requirements of intelligent 

transportation systems mean that any delay can affect driving decisions, increasing the risk of accidents. 

Current mainstream small object detection methods primarily include convolutional neural network 

(CNN)-based models such as SSD (Single Shot MultiBox Detector)[1], YOLO (You Only Look Once)[2], 

and Faster R-CNN (Faster Regions with Convolutional Neural Network)[3]. These models can achieve 

high detection accuracy in many cases, but they often encounter difficulties when dealing with extremely 

small or complex background targets, especially when the target size is very small or the target-to-

background contrast is low. Furthermore, these methods require high computational costs and storage 

resources, limiting their application on resource-constrained devices such as mobile devices or edge 
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computing devices. Therefore, developing high-precision traffic sign detection systems that can run 

efficiently in resource-limited environments is essential to meet the high real-time and reliability 

requirements of intelligent transportation systems. 

To overcome these limitations, this study proposes a novel deep learning model, the 

TrafficSignTinyDetector (TSTD), as shown in Figure 1. The main contributions of this work are:  

1) The model introduces efficientFormerv2[4] as the backbone network, improving the efficiency 

and accuracy of feature extraction, enabling the model to quickly and accurately recognize traffic signs 

in complex environments. 

2) The C2f_DBB[5] module is used to replace the traditional C2f module, enhancing the model's 

ability to detect small targets and improving sensitivity and accuracy in small target detection. 

3) The introduction of the Normalized Wasserstein Distance (NWD)[6] helps the model more finely 

handle minor variations in target distribution, enhancing detection accuracy and robustness. 

 

Figure 1: Model Workflow. 

2. TrafficSignTinyDetector (TSTD) Architecture Design 

The Traffic Sign Tiny Detector (TSTD) system is based on the improved YOLOv8 architecture, using 

efficientFormerv2 as the backbone network to enhance feature extraction efficiency and accuracy. This 

enables better handling of complex environment images, especially for small or distant traffic signs.  

The detection head of the TSTD system uses the novel C2f_DBB module to replace the traditional 

C2f module, designed to enhance the response capability to small targets. By optimizing feature fusion 

and processing mechanisms, the C2f_DBB module can more accurately locate and recognize small traffic 

signs, improving overall detection accuracy.  

Additionally, the TSTD system introduces the Normalized Wasserstein Distance (NWD) into the loss 

function, focusing on the differences between actual and expected outputs during training. This method 

improves the model's generalization ability for different sizes and types of traffic signs and significantly 

enhances robustness in complex backgrounds.  

Overall, the TSTD system forms an efficient, accurate, and adaptable traffic sign detection system. It 

is suitable for typical urban and suburban road environments and can work effectively on highways and 

under adverse weather conditions, providing robust support for real-time applications in intelligent 

transportation systems. 

3. Related Work 

3.1. Data Augmentation 

Large datasets are required in object detection for high precision and robustness. Given the small 

scale and limited diversity of traffic sign datasets, data augmentation is crucial. This study uses mosaic 

and mixup data augmentation methods to enhance data diversity during training for the 

TrafficSignTinyDetector (TSTD) model. 
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The mosaic data augmentation algorithm stitches multiple images together proportionally to form a 

new training image, enabling the model to recognize targets in smaller regions. This method is derived 

from the CutMix data augmentation algorithm, with the main difference being that CutMix typically uses 

two images for stitching, whereas Mosaic uses four. This design helps the model improve recognition 

ability for small or partially obscured traffic signs when handling real-world scenarios. 

Additionally, the mixup algorithm blends two images at the pixel level to generate new training 

samples. This method not only increases the diversity of training data but also improves the model's 

robustness to noise in the images. Mosaic augmentation is typically turned off in the last 10 training 

cycles to refine the model's fit to real-world scene data. 

By applying these data augmentation techniques, the TSTD model can effectively improve the 

detection performance of small traffic signs in complex environments, enhancing the model's 

generalization ability and robustness. 

3.2. Object Detectors 

Two-stage object detectors divide the detection process into two stages: the first stage extracts regions 

where objects are located, and the second stage uses CNN to classify the regions. These detectors usually 

have higher precision, but the multiple steps make them slower, unsuitable for real-time detection. 

RCNN (Region-CNN) selects a set of object candidate boxes through selective search, resizes them 

to a fixed size, and uses a CNN model to extract features, followed by SVM (Support Vector Machine) 

for prediction and target classification. SPPNet adds a pyramid pooling layer after the last convolutional 

layer. Faster R-CNN uses Region Proposal Network (RPN) instead of selective search to generate 

proposal windows and shares CNN features. FPN (Feature Pyramid Network) constructs different scales 

of images or feature maps for model training and testing, enhancing robustness to different sizes of targets. 

Single-stage object detectors output detection results in a single training step, significantly improving 

detection speed but usually having lower precision than two-stage detectors due to simplified steps. The 

TSTD algorithm gradually balances speed and precision during its development. SSD (Single Shot 

Multibox Detector)[1] is based on a feed-forward convolutional network, generating fixed-size detection 

boxes, scoring object instances within them, and using non-maximum suppression to produce the final 

result. YOLO (You Only Look Once) takes the entire image as input, directly regressing detection box 

locations and their respective categories in the output. Swin Transformer[7] improves upon ViT[8] by 

performing self-attention mechanism calculations through window scaling, introducing locally 

aggregated information. 

3.3. Application of efficientFormerv2 

EfficientFormerv2 is a highly efficient Transformer network architecture specifically designed for 

handling large-scale datasets and complex image features in computer vision tasks. In this study's Traffic 

Sign Tiny Detector (TSTD) model, efficientFormerv2 plays a crucial role as the backbone network. Its 

self-attention mechanism can effectively capture long-distance dependencies in images, which is 

particularly important for recognizing and distinguishing small-sized traffic signs in complex 

backgrounds. Compared to traditional convolutional neural networks, efficientFormerv2 provides a 

wider field of view and finer feature representation, enhancing the model's ability to recognize traffic 

sign details. 

Additionally, efficientFormerv2 optimizes resource allocation during computation, reducing the 

model's operational computational cost. This allows efficientFormerv2 to perform well not only in high-

performance computing environments but also on resource-constrained mobile devices and edge 

computing platforms, which is critical for real-time traffic sign detection systems. EfficientFormerv2 can 

improve the model's performance in various complex traffic scenarios, especially when detecting small 

targets and traffic signs in dynamic environments. With this efficient network structure, the model can 

achieve fast and accurate traffic sign recognition, supporting rapid decision-making and response in 

intelligent transportation systems. 

3.4. YOLOv8 Algorithm 

Since the open-source release of YOLOv8 code, extensive testing has shown an unprecedented 

balance between precision and speed. YOLOv8 optimizes and improves upon YOLOv5, with key 
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enhancements including replacing the C3 module with the C2f module for lightweight processing. The 

C3 module combines CSPNet's shunt concept with a residual structure, while the C2f module adds more 

gradient flow branches in parallel, gathering more gradient flow information through the ELAN 

(Effective Long-Range Aggregation Network) module, enhancing precision while maintaining 

lightweight processing. The Neck stage removes the convolution layer before upsampling, reducing the 

algorithm's size and improving performance. 

The Head part is changed to a Decoupled-Head, which uses two convolutions separately for 

classification and regression. The regression head's channel number is modified to 4×reg_max due to the 

use of the DFL concept. YOLOv8 also adopts the Anchor Free method, transitioning to an Anchor Free 

era. The anchor Free method represents objects through multiple key points or central points and 

boundary information, making it more suitable for small object detection, especially in complex 

backgrounds. 

4. TrafficSignTinyDetector Model Construction 

4.1. Overall Network Structure 

YOLOv8 is an improved version of the YOLOv5 benchmark model, offering not only better precision 

but also enhanced performance and lightweight design. The algorithm replaces the C3 module with the 

C2f module, using more gradient flow branches in parallel to gather richer gradient information. Gradient 

flow branches have proven effective in practice for improving algorithm precision. The model also 

changes the SPP (Spatial Pyramid Pooling) structure to the SPPF (Spatial Pyramid Pooling-Fast) 

structure, achieving similar effects while reducing execution time by half. The prediction head is also 

changed to DecoupledHead, accelerating algorithm convergence and improving performance in end-to-

end predictions. 

The official release includes five configurations: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 

YOLOv8x. However, the original model still faces challenges in detecting small traffic signs, particularly 

in dense or tiny sign locations, lacking contextual information, and suffering from the negative effects of 

discontinuities caused by negative samples. This study improves upon the YOLOv8n algorithm and 

strengthens the backbone for enhanced environmental understanding and the improved detection head 

algorithm for cases with many small target signs. The baseline YOLOv8 network structure is shown in 

Figure 2, and the improved TSTD (TrafficSignTinyDetector) network structure is shown in Figure 3. 

 

Figure 2: YOLOv8 Network Structure. 
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Figure 3: TSTD Network Structure. 

4.2. Overall Network Structure 

In the field of object detection, the attention mechanism is considered an effective method for 

capturing long-distance relationships between targets. To capture global features and complex contextual 

information in images, Alexey et al. proposed Vision Transformer (ViT), which slices and unfolds images 

to capture relationships within them. However, ViT and its variants still have higher latency or more 

parameters than lightweight CNNs, even compared to MobileNet[9] from years ago. In practice, latency 

and size are crucial for efficient deployment on resource-constrained hardware. To address this issue, 

Yanyu Li et al. reexamined ViT's design choices and proposed an improved super-network, 

efficientFormer[10], with low latency and high parameter efficiency, and further introduced a fine-

grained joint search strategy to propose efficientFormerv2[4], a strategy that finds effective architectures 

by simultaneously optimizing latency and parameter count. 

To enhance YOLOv8's performance in small traffic sign detection, this study introduces 

efficientFormerv2 as the backbone network in the Traffic Sign Tiny Detector (TSTD) model. 

EfficientFormerv2 is a highly efficient Transformer network architecture designed for processing large-

scale datasets and complex image features. Its introduction brings several key improvements to the model: 

4.2.1. Attention Mechanism 

EfficientFormerv2 uses a self-attention mechanism[11] that can effectively capture long-distance 

dependencies in images. This is particularly important for recognizing and distinguishing small-sized 

traffic signs in complex backgrounds. Compared to traditional convolutional neural networks, 

efficientFormerv2 provides a wider field of view and finer feature representation, allowing the model to 

more accurately recognize traffic sign details. 

Furthermore, the traditional ViT and EfficientFormer attention modules use the MHSA+FFN 

structure. To improve the performance of the attention module without increasing the model's size and 

latency, efficientFormerv2 adopts two methods to improve MHSA, described by equations (1) and (2) 

for traditional and multi-head attention mechanisms, respectively. Figure 4 depicts the improvements in 

MHSA in v2. Firstly, by adding 3×3 depth-wise convolution to the value matrix (V) in the depth direction, 

local information is injected. Secondly, adding fully connected layers (talking head) in the head 

dimension enables communication between attention heads. These improvements enhance the 

performance of the attention mechanism while maintaining low computational overhead. 

4.2.2. Computational Efficiency and Precision 

EfficientFormerv2 optimizes resource allocation during computation, significantly reducing the 

model's operational computational cost. Despite its reduced computational complexity, it maintains high 

precision in feature extraction. This allows efficientFormerv2 to perform well not only in high-

performance computing environments but also on resource-constrained mobile devices and edge 

computing platforms, supporting real-time traffic sign detection systems. 

4.2.3. Optimized Feature Fusion 

EfficientFormerv2 optimizes feature fusion, enabling more effective integration of feature 

information at different levels. This optimization improves the model's performance in handling multi-
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scale targets, making it more effective in detecting distant or partially obscured traffic signs. 

4.3. C2F_DBB 

In the Traffic Sign Tiny Detector (TSTD) model, to further enhance the detection performance of 

small traffic signs, this study introduces the C2F_DBB (C2f with Diverse Branch Block) module based 

on YOLOv8. The C2F_DBB module improves feature fusion and processing mechanisms, enhancing 

the response capability and detection accuracy for small targets. 

4.3.1. Feature Fusion and Lightweight Design 

The C2F_DBB module enhances feature fusion capability through a multi-branch design. Multiple 

branches capture and fuse features from different perspectives, improving the model's ability to detect 

targets in small and complex backgrounds, thus improving overall detection performance. 

Despite introducing multiple branches and complex feature fusion mechanisms, the C2F_DBB 

module maintains a lightweight design through efficient convolution operations and optimized network 

structure. This ensures excellent performance in high-performance computing environments while also 

being suitable for deployment on resource-constrained mobile devices and edge computing platforms, 

providing technical support for real-time traffic sign detection. 

4.3.2. Efficient Convolution Operations 

The C2F_DBB module adopts a combination of 3×3 depth-wise convolution (DWCONV) and other 

convolution operations, improving feature extraction efficiency and precision. Depth-wise convolution 

effectively captures local features, while other convolution operations enhance the global representation 

of features. The combination of both maintains computational efficiency while improving detection 

precision. 

4.4. NWD Loss Function 

In traditional YOLOv8, the coordinate loss function is based on Intersection over Union (IoU)[2] 

calculation and further optimized as Complete Intersection over Union (CIoU)[11]. Class loss uses cross-

entropy loss, and object loss uses binary cross-entropy loss. The weighted sum of these three constitutes 

the final loss function. However, in the detection of tiny traffic signs, even very small positional 

deviations can cause significant changes in IoU value because IoU metrics remain constant across 

different scales. 

For example, in an image, tiny traffic signs may occupy only a few pixels, making IoU-based metrics 

susceptible to noise. This noise can cause excessive sensitivity to minor positional changes in small 

targets. To address this issue, this study introduces Gaussian distribution to optimize the loss function for 

small object detection scenarios. 

By comparing the probability distribution differences between predicted and actual bounding boxes, 

this study can measure their similarity more accurately, rather than directly computing positional 

differences. Using Gaussian distribution to describe and compare these distributions helps avoid unstable 

metrics due to minimal positional deviations. The probability density function of a two-dimensional 

Gaussian distribution is shown in equation (1): 
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Where x is the position vector containing coordinates (x, y), μ is the mean composed of the coordinate 

values (x, y), and Σ is the positive definite covariance matrix with corresponding variance values on the 

diagonal. 

5. Experiments and Results Analysis 

5.1. Experimental Platform 

The experiments in this paper were conducted on an Ubuntu 20.04 system with an NVIDIA GeForce 

RTX 4090 GPU, 24 GB of VRAM, and an Intel(R) Xeon(R) Platinum 8352V CPU. The deep learning 
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framework used was Pytorch 1.11.0, with Python 3.8.10 as the programming language. CUDA 11.3 and 

cuDNN 11.3.109 were installed to support GPU acceleration. 

5.2. The CCTSDB Dataset 

The dataset used in this study is CCTSDB2021 (Chinese Common Traffic Sign Database 2021). A 

total of 2000 images were selected, covering different lighting conditions (e.g., cloudy, foggy, nighttime, 

rainy, snowy, and sunny weather) and traffic signs. Some images were augmented by changing horizontal 

dimensions, adding salt-and-pepper noise, and adjusting brightness. The dataset was divided into training, 

validation, and test sets: 1200 images were used as the training set, with at least 400 targets per category; 

the remaining 800 images were evenly split into validation and test sets, ensuring an even distribution of 

targets per category. Since the latter part of the CCTSDB contains images extracted from driving videos 

with high scene repetition, fewer images were selected to avoid excessive similarity in the dataset. 

CCTSDB2021 is a large-scale image dataset targeting Chinese traffic signs, launched in 2021. It 

covers the diversity and complexity of Chinese traffic signs, including different sizes, shapes, and partial 

occlusions. The dataset contains up to 10,000 high-resolution images, encompassing various categories 

such as warning signs, prohibition signs, and instruction signs. Each image comes with detailed 

annotations, including the sign's category, location, and size, provided in a standard annotation format 

for easy use and reference by algorithm developers. CCTSDB2021 also features a standard evaluation 

system for fair assessment of participating models' recognition and detection performance. 

5.3. Experimental Dataset and Setup 

The experimental setup largely follows the optimized parameter settings of YOLOv8. Mosaic and 

mixup were used during data preprocessing, with mosaic turned off in the last 10 epochs. Degrees were 

set to 10 degrees, image scaling ratio to 0.1, adaptive anchor box calculation was used, and input image 

size was 640×640. Random gradient descent strategy (SGD) was used to optimize network parameters 

during training, with a learning rate set to 0.01, learning rate momentum to 0.937, weight decay to 0.0005, 

batch size to 16, and epoch to 300. NWD loss function IOU_Ratio was set to 0.5. 

5.4. Evaluation Metrics 

In the model evaluation phase, this study used precision, recall, F1-score, and mean Average Precision 

(mAP) as the main evaluation metrics. The detailed description of each metric is as follows: 

Precision mainly evaluates the model's ability to accurately recognize positive samples, calculated as 

shown in equation (2); recall reflects the model's performance in capturing positive samples, calculated 

as shown in equation (3); F1-score, as the harmonic mean of precision and recall, provides an overall 

balanced assessment of the model between these two metrics, calculated as shown in equation (4); mAP 

is a comprehensive metric that considers the accuracy of the model at various recall levels and averages 

these accuracies, making it an important practical metric, calculated as shown in equation (5). 

P / ( ) 100%TP TP FP  
                             (2) 

/ 100%R TP TP FN  （ ）                             (3) 
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1

1
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n

i
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                             (5) 

Where TP (true positive) is the number of correctly predicted positive cases, FP (false positive) is the 

number of incorrectly predicted positive cases, and FN (false negative) is the number of incorrectly 

predicted negative cases. 
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5.5. Experimental Results Analysis 

5.5.1. Ablation Experiment Results 

During the ablation experiments, this study used the baseline model YOLOv8 and gradually added 

model components for comparison to examine the impact of each component on model performance. 

These experiments validated the effectiveness of the new components and their contribution to model 

improvement. 

During the experiments, the mAP of each model was compared to evaluate performance under 

different configurations. Figure 4 shows the mAP fitting curves of each model under different settings, 

illustrating the convergence of the model during training. Table 1 summarizes the experimental results 

under each configuration, detailing the specific impact of component combinations on model 

performance. 

 

Figure 4: Ablation Experiment Fitting Curves. 

Table 1: Ablation Experiment Results. 

Algorithm Model mAP@.5:0.95/% Precision Recall 

efficientFormerv2 0.768 0.894 0.904 

efficientFormerv2 NWD 0.761 0.898 0.903 

TSTD 0.782 0.895 0.921 

5.5.2. Comparative Experiment Results 

This study proposes a new small target traffic sign detection model, TSTD, and demonstrates its 

superior performance through a series of ablation experiments. During the validation of its performance, 

TSTD was compared with the traditional YOLOv8 network architecture, showing that TSTD 

outperforms YOLOv8 in terms of performance. 

To further validate the accuracy of TSTD, other architectures, including YOLOv5 and YOLOv7, were 

also selected for comparison. In the comparative results, this study evaluated the performance of each 

model in terms of mAP@.5:0.95/%, precision, and recall. The results show that TSTD significantly 

outperforms other models across all evaluation metrics. 

Figure 5 clearly shows the performance differences between TSTD and other models. Table 2 details 

the comparative results between TSTD and other models, further proving the significant advantages of 

TSTD in small target traffic sign detection[12-15]. 
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Figure 5: Comparative Experiment Fitting Curves. 

Table 2: Comparative Experiment Results. 

Algorithm Model mAP@.5:0.95/% Precision Recall 

YOLOv5 0.719 0.882 0.898 

YOLOv7 0.589 0.886 0.787 

YOLOv8n 0.731 0.879 0.914 

TSTD 0.782 0.895 0.921 

On the other hand, in the application scenarios of tiny traffic sign detection, this study expects the 

model to accurately recognize every traffic sign (maintaining high recall) while accurately predicting the 

signs (maintaining high precision). Using only precision or recall as performance metrics may lead to 

biased results. If only precision is emphasized, the model may become overly cautious, detecting signs 

only when it is very certain. Conversely, if only recall is emphasized, the model may become overly 

aggressive, making incorrect predictions in areas where there are no signs. 

To address this issue, this study introduces the F1-score as an evaluation metric because it considers 

both precision and recall, providing a more comprehensive evaluation of model performance. The F1-

score is the harmonic mean of precision and recall, balancing the two metrics, enabling the model to 

handle various scenarios in practical applications without being overly cautious or aggressive. Figure 6 

shows the F1-scores of different models. 

 

Figure 6: F1-Score. 
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6. Conclusions  

This paper proposes the TSTD model for small target traffic sign detection, validated through 

extensive experiments. Compared to YOLOv8, YOLOv5, and YOLOv7, TSTD shows significant 

advantages in mAP, precision, and recall. By incorporating efficientFormerv2 as the backbone, the 

improved C2F_DBB module, and the NWD loss function, TSTD excels in complex background and 

small target detection. Additionally, the introduction of the F1-score provides a comprehensive 

evaluation of model performance, ensuring the model is neither overly cautious nor overly aggressive in 

practical applications. Comprehensive experimental results indicate that TSTD has significant potential 

and practical application value in real-time applications and traffic sign detection in intelligent 

transportation systems. 
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