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Abstract: The mechanical properties of carbon steel sheets directly depend on the chemical composition
and process parameters of steel, how to establish the mapping relationship between key parameters and
mechanical properties is the focus of predicting the mechanical properties of rolled steel. Traditional
convolutional neural networks cannot effectively model the correlation between parameters, and there
is a problem of feature loss during the feature transfer process. This paper proposed an expert system
based on multi-scale for predicting carbon steel sheets' mechanical properties. A multi-scale module for
the entire process was proposed to extract comprehensive features from the data, where a graph
convolutional neural network captures the nonlinear causal relationships between production data, and
the multi-scale convolution module ensures effective feature transfer. Secondly, the multi-activation
module, composed of parallel channel and spatial attention, focuses on key features, effectively
improving the network model's generalisation performance and computational efficiency.
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1. Introduction

Carbon steel sheets are widely used in the industrial field, and their production process is a nonlinear
and complex system. The mechanical properties of carbon steel sheets largely determine the reliability
of the final product. Yield strength, tensile strength, and elongation are three important mechanical
property indicators. Mechanical properties not only directly affect the quality of the final product but also
relate to its safety and durability in practical applications. Therefore, accurately predicting these
properties is crucial [1].

Currently, model-based methods for predicting the mechanical properties of steel mainly include
those based on metallurgical mechanism models and those based on data-driven approaches. Due to the
complex dynamic nonlinearities in the production process of carbon steel sheets, it is very difficult to
conduct a comprehensive investigation of the production parameters. In the past, methods for predicting
mechanical properties primarily relied on trial and error to establish physical metallurgy mechanism
models [2].During the modelling process, they were entirely dependent on human experience, which
made it difficult to capture the nonlinear relationships in production data, increased production costs, and
prolonged production cycles.

Convolutional neural networks (CNNs) [3] have achieved excellent results in the current field. For
example, Li et al. proposed a model for predicting the tensile strength of hot-rolled steel using
convolutional neural networks and experimentally validated the superiority of their model [4]. Mehdi et
al. applied transfer learning using a pre-trained VGG19 model to predict the microhardness of threaded
rolled steel [5]. Wang et al. established a convolutional neural network to predict the flatness of strip steel
under different conditions [6]. Hu et al. used a multi-scale convolutional module to enhance the network's
perceptual ability, effectively improving the prediction accuracy of the final cooling temperature of rolled
steel [7]. Although the above methods provide some new ideas for establishing prediction models in the
mechanical property prediction of rolled steel, they still have many shortcomings. As the depth of the
network increases, some key information fails to be effectively transmitted to deeper layers. Shallow
features play an important role in the early stages of the network by helping the model recognize basic
patterns and structures. The loss of these features makes it difficult for the model to capture more complex
features and relationships, thereby affecting overall performance. The attention mechanism can
autonomously focus on key features, enhancing the model's sensitivity to important characteristics. Li et
al. proposed a new attention module to capture global views and transmit features [8]. Zhang et al. used
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a channel-space concatenation-level attention mechanism for denoising mechanical fault signals and
proposed a selective kernel convolutional neural network for mechanical fault diagnosis [9]. Cao et al.
proposed integrating the SE-Res module into the convolutional network to enhance the model's ability
to recognize important features [10]. In convolutional neural networks, most models adopt a hierarchical
structure [3], where only the features from the last convolutional layer are used for prediction. As features
pass through each convolutional layer, information is aggregated to form abstract features for prediction.
This results in the loss of detailed features, affecting the model's performance and its ability to adapt to
different data. In addition, in the production of carbon steel sheets, each process and parameter is compact
and part of the entire process, with complex relationships between the parameters. One-dimensional data
cannot fully capture these characteristics. To address the above issues, an expert system based on multi-
scale(ESMS) was proposed for predicting the mechanical properties of carbon steel sheets. This system
introduces a whole-process multi-scale convolution module (WP-MSC), consisting of a graph
convolutional network (GCN) and a multi-scale convolution module (MSC). In this paper, one-
dimensional data is converted into a causal relationship graph between variables using granger causality
[11]. A graph convolutional network is then used to explore the process characteristics between variables
and extract the causal association features of different variables. The multi-scale convolution module
consists of convolution kernels of different scales, mining latent features at different levels while using
lateral connections to fuse detailed features. This ensures that our model can adapt to different types of
rolled steel, improving its generalization ability. This paper proposes a dual activation module (DAM),
which consists of an adaptive convolutional channel attention mechanism [12] and a spatial activation
module. The dual activation module simultaneously focuses on both the feature space and channels,
which helps the model prioritize key features and improves the prediction accuracy. Extensive
experiments have demonstrated the superiority of this method.

2. Related work
2.1 Convolutional neural network

Convolutional Neural Networks (CNNs) [3] are one of the most widely used models in deep learning.
They reduce the number of model parameters by implementing parameter sharing through sliding
convolutional kernels, which helps extract local features from images. Pooling layers are then used to
reduce the dimensionality of the data while retaining important information. By repeating this process
across the entire input data, a complete output feature map is generated. To extract rich features, CNNs
typically employ multiple convolutional kernels, allowing the input data to be analyzed from different
scales and perspectives, thereby enhancing the model's performance.

2.2 Attention mechanism

The attention mechanism [13] was first introduced in the field of natural language processing,
particularly for machine translation tasks, to address issues in processing long sequence data. It
dynamically assigns different emphasis weights to each element in the sequence, allowing the model to
focus more effectively on relevant information, thereby improving performance and accuracy. With the
development of deep neural networks, the attention mechanism has been widely applied and developed
across various fields [14]. The channel attention mechanism [15] is used to adjust the importance between
different channels. It compresses the feature information of each channel into a single scalar value
through global average pooling and learns the weights of each channel using fully connected layers. The
learned weights are then applied to the original feature map. Qin et al. [16] regarded global average
pooling (GAP) as a special case of discrete cosine transform and proposed using a general 2D cosine
transform to replace GAP, which significantly improves accuracy with almost no increase in
computational cost. Li et al. [17] improved feature representation by selectively applying convolutional
kernels of different scales, capturing multi-scale features at different levels. This approach helps enhance
the network’s adaptability and generalization ability.

2.3 Graphical convolutional neural network

Graph-structured data contains rich information. In the industrial production domain, constructing
graph data can describe the causal relationships between different data points. The input to a Graph
Convolutional Network (GCN) [18] is a graph data structure containing nodes and edges. By stacking
multiple convolutional layers, GCNs progressively aggregate the features of nodes and their neighbours,

Published by Francis Academic Press, UK
2-



Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 6: 1-12, DOI: 10.25236/AJCIS.2025.080601

mining the latent associations between the data. Assume we are given an input feature matrix X and an
adjacency matrix 4. X contains the feature vectors of each node, and A4 describes the connectivity between
the nodes. To enhance the model's expressiveness, the adjacency matrix 4 needs to be normalized, as
shown in Equation (1), where [ is the identity matrix and D is the degree matrix. The convolution process
is shown in Equation (2).

A= D‘§(A + I)D% (1)
HY! = g(AH'WY) Q)

Where H?”=X is the input node feature matrix, H” is the node feature matrix at the /th layer, W is
the learnable weight matrix at the /z/ layer, and o is the nonlinear activation function. This convolution
operation aggregates the features of each node and its neighbors through the adjacency matrix 4, enabling
the node features to capture both local and global information from the graph structure.

3. Methods
3.1 Whole process multi-scale convolution module

Steel rolling production is a whole-process, highly complex process [19], where every production
parameter is crucial, and even small changes in parameter values can impact the mechanical properties
of the steel. Changes in different parameters not only affect the mechanical properties of the steel but
also influence the variations of other parameters. Chemical composition, as the most critical production
factor, plays a decisive role in mechanical properties. A graph data structure can effectively reflect the
correlations between parameters. To explore the whole-process association characteristics of carbon steel
sheet production, we convert the one-dimensional production data into graph data with relational
associations using neural granger causality [11]. We use graph convolutional networks to mine the latent
relationships between nodes and edges and then apply node embedding methods to transform them into
one-dimensional data, which will be used as part of the subsequent input. This process is illustrated in
Equation (3)-(5).

g(v,e)=Gce(x) (3)
y =GCN(g(v,e)) 4)
% = node2vec(y) (%)

Where Gc() represents autoregressive granger causality analysis, which converts the one-dimensional
data x into a directed graph g. Then, a stacked graph convolutional network is used to mine g and obtain
y. Finally, node2vec is applied to transform the feature y into one-dimensional data X.

A multi-scale convolution module (MSC) is proposed. This module uses convolution kernels with
different receptive fields to mine the input data. Through lateral connections, it adds detailed features
into convolution operations with larger receptive fields, effectively avoiding the feature loss caused by
the hierarchical structure. The outputs of each convolution kernel are fused to obtain a multi-scale fused
feature, which is then used as the input for the subsequent network layers. This module effectively
preserves the detailed features of the original data while mining the latent relationships between different
features. Suppose the input features are x = [/}, I,..., I,], as shown in Equation (6)-(10).

F =" (p(x)) (6)
Fy = ™ (p(F)) @)
F, = C¥>'(p(F @ Fy)) ®)
F;=C¥(o(F ® F,)) )
x=C"Y(o(F,®F, ®F)) (10)

Where C*/ represents the convolution operation with different receptive fields, ¢ denotes the
nonlinear activation function, and @ denotes the concatenation operation. The multi-scale convolution
module generates a comprehensive feature X that contains both detailed and abstract features. Based on
the above method, the whole-process multi-scale convolution module (WP-MSC) was proposed. As
shown in Fig.1.

Published by Francis Academic Press, UK
-3-



Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 6: 1-12, DOI: 10.25236/AJCIS.2025.080601

l

MSCNN
g 1] Dwise
J ReLU6
SR 1x1 Cony
ReLUG skip
Connection
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, J 3x1 Conv
1 ! ReLU6
! — ‘
| 7\ | MSCNN
| - /‘7 ! 5x1 Conv
i L / ! ReLUG
! i
| - il ~0 | l '
| / \ ! Fuse Fetures
~jp S
i — . —O— 50 /f ~—> Node2Vec ——»  Fuse Felures .
| . . ReLU ] | ReLUG
: 7\ : l —
(Y
! Input L /K // Output !
!
! 7 !
! . !
|
GCN Layer i

Fig.1 The whole process multi-scale convolution module
3.2 Dual activation module

In the production process of carbon steel sheets, numerous factors influence their mechanical
properties. Each parameter contributes differently to the model. The variation of a certain parameter not
only alters the mechanical properties of the steel but may also affect other parameters. However, relying
solely on manual expertise makes it challenging to effectively distinguish the importance of these
production parameters. The dual activation module (DAM) is proposed to simultaneously extract critical
features along spatial and channel dimensions, enabling the model to focus on more important features.

In regression prediction tasks, the importance of different feature channels varies. Some features may
have a greater impact on the prediction results, while others are relatively less important. Therefore,
studying and understanding the global channel relationships between these features becomes particularly
crucial. The channel attention mechanism [15] plays a key role in this regard. Through the channel
attention mechanism, the weights of individual feature channels can be dynamically adjusted, thereby
highlighting important features and suppressing irrelevant or minor features, which improves the overall
prediction accuracy and stability. The adaptive convolutional channel attention mechanism [12] is used
to extract the channel attention scores, as shown in Equation (11)-(13).

z = GMP(X,) (1)
k= |logy(c)|odd (12)
p¢ = @(C™'(2,k)) (13)

First, the global maximum pooling operation GMP() is used to explore the input feature X;, obtaining
the global information z for each channel. Equation (12) adapts the convolutional kernel & based on the
number of feature channels. y is a hyperparameter, whose optimal value is determined experimentally.
The attention score p¢ for each channel feature is obtained through 1D convolution, where ¢ represents
the nonlinear activation function.

The spatial activation module plays a key role in the model by guiding it to integrate spatial position
features from different channels, thereby improving the accuracy and effectiveness of feature
representation. Specifically, these modules perform in-depth exploration of the input features, capturing
subtle spatial information and utilizing this information to enhance the model's expressiveness. The
following operations are performed on the input feature X:.

g° = CI(CHA(C (X)) (14)

Specifically, a / x/ convolution is used to compress the input feature channels to half of their original
size, representing a lower-dimensional feature. Then, a 3 x/ convolution is applied to perform activation
mining on the low-dimensional abstract features. Finally, a / X/ convolution is used to map the channel
number back to the initial dimension to obtain the spatial activation feature ¢°.

Based on the aforementioned channel attention scores and spatial activation features, dual activation is
defined by Equation (15) — (17). Here, v is the dual attention score, and e is the normalized value. The
weighted value X; is obtained by performing element-wise multiplication between X; and e and ©
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represents the product of the elements. The DAM module is shown in Fig. 2.

v=p°Oq° (15)

e = sigmoid(v) (16)
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Fig.2 Expert system based on multi-scale
3.3 Expert system based on multi-scale

This paper proposes an expert system based on multi-scale (ESMS) for predicting the mechanical
properties of carbon steel sheets, as shown in Fig. 2. The system consists of two parts: the feature
extraction module and the prediction module. The normalized data first undergoes two-point convolution
to expand the channels and enrich semantic information, which serves as the input to the feature
extraction module. The feature extraction module is composed of multiple stacked WP-MSC and DAM
modules, with the optimal number of network layers determined through experiments. WP-MSC uses
graph convolutional networks to mine the causal relationships between production data, while multi-
scale convolution is introduced to ensure the transmission of fine-grained features. Additionally, shortcut
connections are incorporated to prevent model overfitting. The DAM focuses on both the spatial and
channel dimensions of the features, enabling the model to prioritize important features, enhancing its
generalization ability, and improving computational efficiency and usability. The output of the feature
extraction module serves as the input to the prediction module, which maps it into the mechanical
property prediction space using a support vector machine. Extensive experiments demonstrate that ESMS
performs excellently and is highly robust in predicting the mechanical properties of carbon steel sheets.

4. Experiments
4.1 Description of data and indicators

The data used were based on the data collected from the production line of JISCO's carbon thin plate
plant, which was in line with international standards and has practical significance. Before conducting
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the experiments, both datasets were screened, cleaned, and standardized, resulting in 16699 cold-rolled
steel data samples and 7895 hot-rolled steel data samples. In the cold-rolled steel dataset, each sample
contains 14 features and 3 main mechanical performance indicators, while each sample in the hot-rolled
steel dataset contains 10 features and 3 main mechanical performance indicators. For the experiments,
each dataset was randomly divided into a training set and a test set, with 80% used for training and 20%
used for testing. Table 1 shows the data distribution statistics of the minimum, maximum, mean, and
standard deviation for all input variables and labels in the cold-rolled steel dataset used in the experiment.
Among them, C, Si, Mn, P, S, ALS, Cu, Ni and Al represent nine different chemical compositions, CRT,
FE, BT, FRT, and CT represent five process parameters of cold rolled thickness, flatness elongation,
billet thickness, final rolling temperature and coiling temperature, respectively, and YS, TS, EL represent
the yield strength, tensile strength and elongation of the three mechanical property indicators. In addition,
the experimental data were normalised using the z-score method to ensure the stability of the model.

Table 1 Cold rolled dataset

Parameter | Minimum | Maximum | Mean Standard deviation
C 0.0018 0.0634 0.0440 0.0081
Si 0.0140 0.0740 0.0335 0.0087

Mn 0.0830 0.2790 0.1598 0.0296
P 0.0033 0.0258 0.0110 0.0029
S 0.0013 0.0095 0.0044 0.0013

ALS 0.0166 0.0524 0.0334 0.0056

Cu 0.0135 0.0631 0.0233 0.0050

Ni 0.0056 0.0568 0.0140 0.0063

Al 0.0003 0.0722 0.0032 0.0076

CRT 0.23 3.00 1.7339 0.8816

FE 0.48 1.39 1.0623 0.1809

BT 1.80 6.00 4.5938 1.2056

FTT 655.38 958.34 900.52 11.933

CT 590.00 730.00 623.49 13.690

YS 151.00 254.00 186.94 11.460

TS 286.00 373.00 318.45 11.661

EL 31.000 71.500 45.554 3.5066

To evaluate the effectiveness of the final prediction results, four performance metrics were used. The
mean absolute error (MAE) measures the average absolute difference between the model's predicted
values and the actual values. A smaller MAE indicates that the model's predictions are closer to the actual
values. The mean squared error (MSE) and root mean squared error (RMSE) measure the difference
between the predicted and actual values, with smaller values being better. The coefficient of
determination (R?) reflects the extent to which the model explains the variance of the target variable. Its
value ranges from 0 to 1, with values closer to 1 indicating that the model explains the target variable
more effectively and has a better fit. These are shown in Equation (18)-(21).

1 ~

MAE = — XL |y; = 3l (18)
1 ~

MSE =~ 2L, (yi — 9)° 19)

1 ~

MSE = |- 2L, (yi — §)? (20)
2 = q - Z=m0i90°

RE=1 I 0i-9)? h

4.2 Parameterization of the network

The hyperparameters involved in this study were determined using grid search, which explores every
parameter combination to find the optimal values. Specifically, the adaptive factor y of the adaptive
convolutional channel attention mechanism is set to 4, the learning rate r is set to 0.001, and the batch
size (epoch) is set to 300. Additionally, a multi-branch autoencoder [12] was used for data augmentation
to expand the input dimensions of the original data. For the cold-rolled steel dataset and hot-rolled steel
dataset, the number of autoencoder branches n was set to 3 and 2, respectively.
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4.3 Ablation experiments

Table 2 Ablation experiments

Target . MSCNN- GCN-  Proposed
Dataset Vari a%ﬂes Metrics Module DAM DAM DAM MI(; del
GCN x X N v
MSCNN  x V x v
DAM \ \ V V
MAE 0.3523  0.2832  0.2713  0.1165
vs MSE 0.2256  0.1462  0.1322  0.0362
RMSE 04724  0.3824  0.3833  0.1826
R? 0.7363  0.8296  0.8315  0.9482
MAE 0.2945  0.2769  0.2719  0.1093
Cold-rolled TS MSE 0.1932  0.1368  0.1304  0.0367
carbon steel RMSE 0.4526  0.3756 0.3775  0.1722
R? 0.7627  0.8336  0.8362  0.9572
MAE 0.2638  0.2724  0.2649  0.1069
EL MSE 0.1934  0.1262  0.1344  0.0219
RMSE 0.4365  0.3723 0.3720  0.1690
R? 0.7749  0.8484  0.8494  0.9827
MAE 0.3643  0.2802 0.2785 0.1171
vs MSE 0.2367  0.1533 0.1442  0.0473
RMSE 0.4825 0.3902 0.3839 0.1917
R? 0.7261  0.8232  0.8303  0.9493
MAE 0.3036  0.2735 0.2741  0.1128
Hot-rolled TS MSE 0.1935  0.1362  0.1347 0.0324
carbon steel RMSE 04638 0.3742 03832 0.1884
R? 0.7471  0.8275 0.8331  0.9583
MAE 0.2723  0.2623 0.2667  0.1026
EL MSE 0.1932  0.1473 0.1451  0.0327
RMSE 0.4203  0.3621 0.3642  0.1894
R? 0.7689  0.8332  0.8472  0.9794

To verify the effectiveness of each module in the proposed model, ablation studies were conducted
on the test set in this section. By removing individual modules and observing their impact on model
performance, the contribution of each module is demonstrated. First, the importance of the WP-MSC
module is discussed. The graph convolutional network was removed, and traditional convolutions were
used instead of multi-scale convolutions to test the effectiveness of the WP-MSC module, as shown in
Table 2.

4.4 Comparative tests

In this section, comparison experiments were conducted using the cold-rolled steel and hot-rolled
steel production datasets. The ESMS model was compared with five other existing prediction models.
The input data for both datasets were standardized, with the cold-rolled steel dataset containing 14
parameters, and the hot-rolled steel dataset containing 10 parameters. The output consisted of three
mechanical performance indicators. The comparison models include the classical models AlexNet
[20]and GCN [18], as well as newer models proposed in recent years. DeepGCNs [21] defines a
differentiable generalized aggregation function that unifies different message aggregation operations,
adopts a deeper structure, and addresses the problem of information vanishing in graph-structured data.
CSFF-ResNet [22] constructed a channel-space parallel residual network. Additionally, the AutoCNN-
LSTM hybrid network model proposed in reference [23] was used. The proposed network model
demonstrated excellent prediction performance and robustness through multiple evaluation metrics, as
shown in Table 3. To ensure fairness, all models used multi-branch autoencoders [12] for data
augmentation.
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Table 3 Comparative experiments

Model

Dataset VZE;‘%?ZS Metrics CSFF-  AutoCNN-
AlexNet GCN  DeepGCNs ResNet LSTM ESMS
MAE 0.365 0.2823 0.2048 0.1717 0.1894 0.1165
vs MSE 0.1738  0.1482 0.1068 0.0747 0.0820 0.0362
RMSE 04172 0.3973 0.3263 0.2728 0.2829 0.1826
R? 0.7684  0.8109 0.8811 0.9248 0.9126 0.9482
Cold- MAE 0.2973  0.2896 0.1911 0.1479 0.1590 0.1093
rolled TS MSE 0.1872  0.1497 0.0902 0.0616 0.0729 0.0367
carbon RMSE 04383 0.3830 0.2999 0.2476 0.2529 0.1722
steel R? 0.7643  0.8146 0.9005 0.9297 0.9189 0.9572
MAE 0.3027  0.2790 0.1702 0.1435 0.1521 0.1069
EL MSE 0.1747  0.1478 0.0791 0.0621 0.0792 0.0219
RMSE 04172 0.3876 0.2795 0.2423 0.2527 0.1690
R? 0.7720  0.8272 0.9143 0.9304 0.9262 0.9827
MAE 0.3104 0.2894 0.2133 0.1773 0.1849 0.1171
vs MSE 0.1792  0.1593 0.1187 0.0794 0.0887 0.0473
RMSE 04138  0.3980 0.3376 0.2810 0.2928 0.1917
R? 0.7559  0.8272 0.8741 0.9201 0.9192 0.9493
Hot MAE 0.2927  0.2820 0.2052 0.1583 0.1650 0.1128
rolled TS MSE 0.1733  0.1481 0.0982 0.0695 0.0830 0.0324
carbon RMSE 04204 0.3930 0.3173 0.2593 0.2638 0.1884
steel R? 0.7628  0.8261 0.8925 0.9267 0.9198 0.9583
MAE 0.3128  0.2783 0.1774 0.1483 0.1849 0.1026
EL MSE 0.1627  0.1528 0.0836 0.0703 0.0947 0.0327

RMSE 04142 0.3783 0.2839 0.2572 0.2637 0.1894
R? 0.7719  0.8229 0.9060 0.9296 0.9262 0.9794

Based on the working environment conditions and conventional experience in the field, the deviation
ranges for YS, TS, and EL were set to +£10 MPa, =15 MPa, and +3, respectively. Based on these error
ranges, Fig. 3 shows the error rates of different models on two different datasets. The ESMS model
achieves the lowest error rates for all three mechanical performance indicators. The dual activation
module and graph convolution network demonstrate excellent data interpretability, adapting well to
different datasets and exhibiting strong robustness. Compared to the CSFF-ResNet model, the error rates
for YS, TS, and EL in the cold-rolled steel dataset decreased by 31.0%, 50.0%, and 73.9%, respectively,
while in the hot-rolled steel dataset, the error rates for YS, TS, and EL decreased by 24.1%, 48.2%, and
66.7%, respectively. This further demonstrates that the ESMS model is better suited for practical
industrial requirements.
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(a) Cold Rolled Steel.
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Fig.3 Error rate comparison of different models

To visually demonstrate the effectiveness of the ESMS network model, Fig. 4(a-c) and Fig. 5(a-c)
show the fitting results between the predicted and actual values for the three mechanical performance
indicators on the cold-rolled steel and hot-rolled steel datasets, respectively. From the figures, it can be
seen that the predicted results closely match the actual values, which further validates the effectiveness
of the model.
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Fig.4 Fitting Curves for the Cold-Rolled Steel Dataset
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Fig.5 Fitting Curves for the hot-Rolled Steel Dataset

Published by Francis Academic Press, UK
-10-



Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 6: 1-12, DOI: 10.25236/AJCIS.2025.080601

5. Conclusion

This paper proposes an expert system based on multi-scale for predicting the mechanical properties
of different types of steel. First, a whole-process multi-scale convolution module is introduced to mine
the graph-structured production process data, capturing the correlation features between various
production parameters, while multi-scale convolution ensures the transmission of fine-grained features.
Secondly, the dual activation module focuses on the spatial and channel dimensions of features, making
the model more attentive to key features, enhancing its generalization ability, and improving
computational efficiency and usability. Through extensive experiments, key factors such as
hyperparameters and model depth were determined, and the model's prediction performance was
evaluated using multiple metrics and different datasets. On various datasets, ESMS achieved the highest
prediction accuracy. Specifically, for the cold-rolled steel dataset, the accuracy for YS, TS, and EL were
98%, 98.7%, and 99.4%, respectively, while for the hot-rolled steel dataset, the accuracy for YS, TS, and
EL were 97.8%, 98.6%, and 99.2%, respectively. Experimental results show that the ESMS model
demonstrates exceptional prediction performance and strong robustness, providing valuable insights and
references for research and applications in related fields.
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