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Abstract: In order to accurately predict the development of global electricity generation, this paper 

presents a prediction model of least squares support vector machine (LS-SVR) based on Sparrow search 

optimization algorithm (SSA), and obtains the fitting curve through iterative optimization of the 

hyperparameters. The results show that the prediction accuracy of the least squares support vector 

regression machine (SSA_LSSVR) based on the sparrow search optimization algorithm is higher, and it 

can predict the development trend of global power production more accurately. 
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1. Introduction 

As we all know, the social development of a country cannot be far away from electricity, which is the 

material basis of production and life in modern society, and the international trade with electricity has 

brought more development opportunities to many countries. With the gradual advancement of 

industrialization in various countries, human demand for electricity will inevitably increase year by year. 

Whether the power industry structure and development strategy can be adjusted while developing may 

indirectly affect the development of a country. In the past, most prediction methods used neural network 

models, such as the BP neural network (BPNN) [1], Radial basis function neural network (RBFNN) [2], 

long-term and short-term memory artificial neural network (LSTM), etc. 

However, because most of these methods require a large amount of historical data, and the actual data 

provided is very limited, there are certain limitations [3, 4]. In recent years, scholars in our country and 

abroad have conducted many studies on the regression and classification of vector machines [5, 6]. The 

research shows that support vector machines have great advantages in solving practical problems such 

as high dimensions, small samples, nonlinearity, and local extreme value, so they can replace the artificial 

neural network algorithm for prediction in certain cases. From what has been discussed above, the least 

squares support vector regression machine (SSA-LSSVR) optimized by the sparrow algorithm is 

proposed in this paper to predict the global electricity generation, and finally to predict the future trend 

with high accuracy. 

2. Least squares support vector regression 

Support vector machine (SVM) is developed as a kind of an intelligent algorithm based on 

classification or regression at the end of the last century. Support vector machine (SVM) is often found 

that sometimes than other widely used machine learning algorithm of neural network (such as above) has 

a better prediction result and be used. It is mainly by looking for both that can meet the requirements of 

classification and can guarantee the classification accuracy of the optimal hyperplane. It was initially 

used to solve the linearly separable problem of dichotomies. Then in the process of gradual development, 

through the application of kernel function, the linear non-separable problem of low dimensional space is 

mapped to the linear separable problem of high dimensional space, and the linear non-separable problem 

is solved. Later, by improving the traditional SVM [7], Suykens et al. developed the least squares support 

vector machine (LS-SVM) [8]. Compared with the standard SVM, LS-SVM uses the linear least squares 

method to replace the traditional quadratic programming method to solve the loss function, which greatly 

simplifies the standard SVM. 
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It has a better adaptability and inherits good generalization ability, which greatly promotes the 

application of LS-SVM in image recognition and regression analysis [9-10].LS-SVM is described below. 

Consider a given training set{𝑥𝑖 , 𝑦𝑖}, ∅ ∈ 𝑅
2,𝑖 = 1,2, …𝑁, First, the input data 𝑥𝑖and the output data 

𝑦𝑖, We can build regression models by constructing the following nonlinear mapping functions: 

𝑦 = 𝑤𝑡𝜙(𝑥) + 𝑏                                 (1) 

Where, 𝑤 is the weight vector, 𝑏 is the bias term. Of course, as one of SVM, which must minimize 

the cost function C containing the penalty regression error: 

𝑚𝑖𝑛𝐶(𝑤, 𝑒) =
1

2
𝑤𝑡𝑤 +

1

2
𝛾 ∑ 𝑒𝑖

2𝑁
𝑖=1                          (2) 

And it's constrained by the following equations 

𝑦 = 𝑤𝑡𝜙(𝑥𝑖) + 𝑏 + 𝑒𝑖 , 𝑖 = 1,2,3, … , 𝑁                       (3) 

The first part of this cost function is weight attenuation, which is used to gauge weight size and 

penalize large weights. Because of this regularization, the weights converge to similar values. Large 

weights can worsen the generalization ability of LS-SVM because they lead to excessive variance. The 

second part (2) is the regression error of all the training data. Parameter C must be given by the user 

through optimization in advance. Compared with the first part, this part gives the relative weight. The 

third part (3) provides the limitation by giving the definition of regression error. To solve this 

optimization problem, the Lagrange function is constructed as: 

𝐿(𝑤, 𝑏, 𝑒, 𝑎) =
1

2
∥ 𝑤 ∥2+ 𝛾∑ 𝑒𝑖

2𝑁
𝑖=1 − ∑ 𝛼𝑖{𝑤

𝑡𝜙(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖} 
𝑁
𝑖=1          (4) 

Where 𝛼𝑖 are Lagrange multipliers. 

The above solution of (4) can be obtained by partially differentiating with respect to 𝑏,𝑤, 𝑒𝑖 , 𝛼𝑖:  

{
  
 

  
 

{

𝜕𝐿

𝜕𝑤
= 0 → 𝑤 = ∑ 𝛼𝑖𝜙(𝑥𝑖)

𝑁
𝑖=1

𝜕𝐿

𝜕𝑏
= 0 → ∑ 𝛼𝑖 = 0

𝑁
𝑖=1

{

𝜕𝐿

𝜕𝑒𝑖
= 0 → 𝛼𝑖 = 𝛾𝑒𝑖 , 𝑖 = 1,2… ,𝑁

𝜕𝐿

𝜕𝛼𝑖
= 0 → 𝑤𝑡𝜙(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖 = 𝛾𝑒𝑖 , 𝑖 = 1,2, … , 𝑁

                 (5) 

And then:  

𝑤 = ∑ 𝛼𝑖𝜙(𝑥𝑖) = ∑ 𝛾𝑒𝑖𝜙(𝑥𝑖)
𝑁
𝑖=1

𝑁
𝑖=1                          (6) 

Where a positive definite kernel is used as follows: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑡𝜙(𝑥𝑗)                             (7) 

The most important result is that the weights (𝑤) be written as linear combinations of the Lagrange 

multipliers with the corresponding data training (𝑥𝑖), Putting the result of (6) into (1), The following 

formula is obtained:  

𝑦 = ∑ 𝛼𝑖𝜙(𝑥𝑖)
𝑡𝜙(𝑥)𝑁

𝑖=1 + 𝑏                           (8) 

For which 𝑦𝑖can be evaluated it is: 

𝑦𝑖 = ∑ 𝛼𝑖𝜙(𝑥𝑖)
𝑡𝜙(𝑥𝑗)

𝑁
𝑖=1 + 𝑏                          (9) 

The vector follows from solving a set of linear equations: 

𝐴 [
𝛼
𝑏
] = [

𝑦
0
]                                 (10) 

Where 𝐴 is a square matrix given by:  

 𝐴 = [
𝐾 +

1

𝛾
1𝑁

𝐼𝑁
𝑇 0

]                               (11) 

Where 𝐾 denotes the kernel matrix with 𝑖𝑗th element in (7) and 𝐼 denotes the identity matrix 

𝑁 ×  𝑁, 1𝑁= [1 1 1 . . . 1]𝑇T Hence, the solution is given by: 
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[
𝛼
𝑏
] = 𝐴−1 [

𝑦
0
]                               (12) 

From (11) to (12), it can be seen that generally, all Lagrange multipliers (support vectors) are non-

zero, which means that all training objects contribute to the solution. Compared to standard SVM, LS-

SVR solutions are usually not sparse. However, sparse solutions can easily be achieved by pruning or 

reducing techniques. Depending on the number of training data sets, either a direct solver or an iterative 

solver such as the conjugate gradient method (for large data sets) can be used, in both cases using 

numerically reliable methods. In applications involving nonlinear regression, it is enough to change the 

inner product of ϕ(xi) ∙ ϕ(xj) (9) by a kernel function and the ijth element of the matrix K is equal to 

(7). If this kernel function satisfies Mercer's case, the kernel implicitly determines both a nonlinear 

mapping,x → ϕ(x)and the corresponding inner product ϕ(xi)
t ⋅ ϕ(xj).And then following nonlinear 

regression function can be obtained: 

𝑦 = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏
𝑁
𝑖=1                            (13) 

For a point𝑥𝑖 j to be evaluated it is: 

𝑦𝑗 = ∑ 𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑗)
𝑁
𝑖=1 + 𝑏                          (14) 

Any function K(xi, xj) satisfying Mercer's condition can be used as a kernel function. Typical kernel 

functions include linear function, polynomial function, radial basis function (RBF), sigmoid function, 

and so on. Among them, the radial basis function requires fewer parameters and has excellent 

performance, so RBF is an effective choice of the kernel function, so we will take(15)RBF as the kernel 

function: 

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (−
∥𝑥−𝑥𝑖∥

2

2𝜎2
)                         (15) 

Therefore, compared with the standard SVR, the LS-SVM regression model only requires the user to 

appropriately select the two main hyperparameters C  and σ2  in advance. The selection of 

hyperparameters plays an important role in the performance of LS-SVM. Among the alternatives, it is 

best to use cross-validation. Based on this idea, some traditional methods are used to obtain the optimal 

hyperparameters of the regression model. For example, genetic algorithm, simulated annealing algorithm, 

and particle swarm optimization algorithm, and other evolutionary methods, are one of the most widely 

used methods, but this paper uses a relatively new Sparrow Search optimization algorithm. 

 

Figure 1: Nested Cross-Validation 

3. Sparrow search optimization algorithm 

As we all know, sparrows are omnivorous migratory birds widely distributed in the world. For a long 

time, their wisdom is reflected in their coexistence with human beings. By observing the habits of 

sparrows, we can first divide them into two classes: producers and scroungers. 

The scroungers get their food from producers while producers actively search for food sources. Long 

observations of sparrows show that they have a flexible strategy for acquiring food, shifting between the 

roles of producer and scrounger. 

To simplify the analysis of this process, we will idealize it and follow these rules: 
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(1) The producer usually has a high level of energy reserves and provides a place or direction for all 

scroungers. It is responsible for identifying areas where rich food sources can be found. The level of 

energy reserve depends on the assessment of the individual fitness value. 

(2) Each sparrow could become a producer if it sought a better source of food, but the proportion of 

producers and scroungers did not change across the population. 

(3) As soon as the sparrows detect a predator, they begin to call as an alarm signal. When the alarm 

value is greater than the safety threshold, the producer needs to direct all scroungers to the safety zone. 

(4) When the sparrows at the edge of the group realized the danger, they quickly moved to the safe 

area to get a better position, while the sparrows in the middle of the group moved randomly to get close 

to other sparrows. 

(5) Sparrows with higher energy as producers. Some hungry scroungers are more likely to fly 

elsewhere for food in order to get more energy. 

(6) The scroungers go in search of food after the producer who can provide it best. At the same time, 

some scroungers may constantly monitor producers and compete for food to increase their own rate of 

predation. 

In the modeling process of sparrow search optimization algorithm, we tend to virtual the process of 

the sparrow to find food: 

𝑋 = [

𝑥1,1 𝑥1,2 𝑥1,3 𝑥1,4 … … 𝑥1,𝑑
𝑥2,1 𝑥2,2 𝑥2,3 𝑥2,4 … … 𝑥2,𝑑

⋮ ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 𝑥𝑛,3

⋮
𝑥𝑛,4

⋮ ⋮ ⋮
⋯ … 𝑥𝑛,𝑑

]                    (16) 

Where 𝑛 the number of sparrows, 𝑑 shows the dimension of the variables to be optimized. the 

fitness value of all sparrows can be expressed by the following vector: 

𝐹𝑥 =

[
 
 
 
𝑓([𝑥1,1   𝑥1,2    …   …    𝑥1,𝑑])

𝑓([𝑥2,1   𝑥2,2    …   …    𝑥2,𝑑])

⋮   ⋮     ⋮    ⋮   ⋮
𝑓([𝑥𝑛,1   𝑥𝑛,2    …   …    𝑥𝑛,𝑑])]

 
 
 
                       (17) 

Where n represents the number of sparrows, and the value of each row in Fx represents the fitness 

value of the individual. In SSA, producers with higher fitness values were given priority in obtaining 

food during the search process. In addition, because producers are responsible for finding food and 

directing the movement of the entire population. As a result, producers can find food in a much wider 

range than scroungers. 

According to the above rules, in each iteration. 

The location of the producer is updated as follows:  

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 ∙ exp (

−𝑖

𝛼∙𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)    𝑖𝑓 𝑅2 < 𝑆𝑇 

𝑋𝑖,𝑗
𝑡 + 𝑄 ∙ 𝐿                   𝑖𝑓 𝑅2 ≥ 𝑆𝑇

                     (18) 

Where t  represents the number of current iterations, 𝑗 = 1,2,3,… , 𝑑. 𝑋𝑖,𝑗
𝑡  represents the value of 

the 𝑗th dimension of the 𝑖th sparrow at iterations  𝑡. 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is a constant with the largest number of 

iterations. 𝛼 ∈ (0,1] is a random number. 𝑅2  (𝑅2 ∈ [0,1]) and 𝑆𝑇  (𝑆𝑇 ∈ [0.5,1.0]) represent the 

alarm value and the safety threshold, respectively. Q  is a random number that obeys normal 

distribution.L is a matrix of 1 × d, which each element inside is 1.  By comparing R2 with ST, we can 

judge whether it is disturbed by predators. 

The position of scroungers has been updated below: 

𝑋𝑖,𝑗
𝑡+1 = {

𝑄 ∙ exp (
𝑋𝑤𝑜𝑟𝑠𝑡
𝑡 −𝑋𝑖,𝑗

𝑡

𝑖2
) 𝑖𝑓 𝑖 >

𝑛

2
 

𝑋𝑝
𝑡+1 + |𝑋𝑖,𝑗

𝑡 − 𝑋𝑝
𝑡+1| ∙ 𝐴+ ∙ 𝐿   𝑖𝑓 𝑖 ≤

𝑛

2
                   

          (19) 

Xp is the best position occupied by the producer. Xworst indicates the globally worst location.A 

represents a matrix of 1 × d for which each element inside is randomly assigned 1or-1, and A+ =

AT(AAT)−1。When i >
n

2
, it suggests that the ith scrounger with the worse fitness value is most likely to 
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be starving. In the simulation, we assumed that these sparrows were 10 to 20 percent of the population 

aware of the danger. We make the initial position of these sparrows in the population random. 

Based on the above rules, we can build the following mathematical model: 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 + 𝐾 ∙ (

|𝑋𝑖,𝑗
𝑡 −𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 |

(𝑓𝑖−𝑓𝑤)+𝜀
)            𝑖𝑓 𝑖 >

𝑛

2
 

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 |                           𝑖𝑓 𝑓𝑖 > 𝑓𝑔                

         (20) 

WhereXbestis the current global best position. As the step size control parameter,β is a normally 

distributed random number with the mean value of 0 and a variance of 1.K ∈[-1,1] is a random number, 

which is the direction of the sparrow's movement and the step size control coefficient. Here fi is the 

fitness value of the sparrow at present.  fg and fw are now the global best and worst fitness values, 

respectively.ε is the smallest constant to avoid zero division error. Whenfi > fg, indicates that sparrows 

are located at the edge of the entire population. Xbest means the central position of the whole group, the 

safest position. Based on the above algorithms, we can optimize the two main hyperparameters γ and 

σ2  of the LS-SVM regression model by using the Sparrow optimization algorithm. In solving the 

hyperparameter selection, each sparrow represents a potential solution consisting of the vector d =
(γ, σ2). Hyperparametric optimality is measured by defining fitness functions related to the optimization 

problem under consideration. During the training and testing of LS-SVM, the goal is to improve the 

generalization performance of the regression model, that is, to minimize the error between the true value 

and the predicted value of the test sample. Therefore, the fitness function can be defined as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑛
∑ √

1

𝑚
∑ (𝑓(𝑥𝑖𝑗) − 𝑦𝑖𝑗)

2𝑚
𝑗=1

𝑛
𝑖=1                     (21) 

The modeling programming environment used in this paper is MATLAB R2018a, and the data is 

from BP-STATs-Review-2021-ALL-Data.At the same time, we took the data of Electricity Generation 

from the above literature to carry out prediction study, and the following are the specific implementation 

process: 

 

Figure 2: Flowchart of SSA for hyper-parameter optimization 

Then, the results are shown as follows: 
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Figure 3: The prediction results based on the optimization algorithm 

After that, we conducted correlation analysis on the above regression curves: 

We select x1, … , xn as training data, f(x1), … , f(xn) as the predictive value of LS-SVM, y1, … , yn 

as the raw data. Finally, we evaluated this model by  MAPE and R2:  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑓(𝑥1)−𝑦𝑖

𝑦𝑖
|  × 100% 𝑛

𝑖=1                        (22) 

𝑅2 =
(𝑛∑ 𝑓(𝑥𝑖)𝑦𝑖−∑ 𝑓(𝑥𝑖)∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1 )2

(𝑛∑ 𝑓(𝑥𝑖)
2−(∑ 𝑓(𝑥𝑖)

𝑛
𝑖=1 )2𝑛

𝑖=1 )(𝑛 ∑ 𝑦𝑖
2−(∑ 𝑦𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1 )
                  (23) 

 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 

True value 20422 20265 20571 22257 22806 23435 24032 24271 24915 25624 26659 27001 26823       

Fitting value 20712 21059 20914 22122 22756 23264 23843 24390 24609 25196 25837 26762 27065       

Predicted value              27065 26847 27122 26924 27175 26994 

Figure 4: The specific value of regression curve 

 

Figure 5: Fitting curve correlation analysis parameters 

4. Conclusion 

In this paper, a new prediction model, the least squares support vector regression model (LS-SVM) 

based on sparrow optimization algorithm (SSA), is studied to predict global power production by 

optimizing the hyperparameters. 

Compared with the standard SVM, LS-SVM simplifies the standard SVM to a large extent and 

replaces the traditional quadratic programming method to solve the loss function by applying the linear 

least squares method. 

The super parameter optimization based on the SSA algorithm has an excellent fitting effect without 

considering other objective and small probability events. The results show that the annual global power 

output will fluctuate and rise, reaching a recent peak in 2025. 
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