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Abstract: Predictive maintenance (PdM) represents a transformative approach in modern 
manufacturing, aiming to forecast equipment failures through data analysis rather than relying on 
scheduled or reactive maintenance. This research presents a comprehensive deep learning-based 
framework for the predictive maintenance of Computer Numerical Control (CNC) machine tools, 
which are critical and costly assets in precision manufacturing. The proposed system utilizes a multi-
sensor data fusion strategy, acquiring real-time operational data including vibration, acoustic 
emission, spindle current, and temperature. A hybrid deep learning model is developed, integrating 
Convolutional Neural Networks (CNNs) for automatic feature extraction from high-dimensional sensor 
signals and Long Short-Term Memory (LSTM) networks to capture temporal dependencies and 
degradation trends. The model is trained on historical run-to-failure data to learn the complex 
mapping between multi-modal sensor inputs and the Remaining Useful Life (RUL) of critical 
components such as spindle bearings and ball screws. Experimental validation is conducted on a three-
axis CNC milling machine under controlled operational loads. The results demonstrate that the 
proposed CNN-LSTM model achieves superior predictive accuracy compared to traditional machine 
learning benchmarks like Support Vector Regression and standalone neural networks. The system 
successfully identifies incipient fault conditions with a high degree of precision, providing early 
warnings significantly ahead of functional failure. This capability enables optimal maintenance 
scheduling, minimizes unplanned downtime, reduces maintenance costs, and extends the operational 
lifespan of CNC machinery. The study confirms the significant potential of deep learning in enhancing 
the intelligence and reliability of industrial predictive maintenance systems. 
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1. Introduction 

The manufacturing industry is undergoing a profound transformation under the paradigm of 
Industry 4.0, characterized by cyber-physical systems, the Internet of Things (IoT), and data-driven 
decision-making. Within this context, maintenance strategies for industrial equipment have evolved 
from traditional reactive and preventive models towards more advanced, condition-based, and 
predictive approaches [1]. Predictive maintenance stands out as a pivotal technology, as it leverages the 
analysis of equipment condition data to predict when a failure might occur, thereby allowing 
maintenance to be performed just in time. This strategy is particularly crucial for Computer Numerical 
Control (CNC) machine tools, which are the backbone of discrete manufacturing for aerospace, 
automotive, and mold-making industries. The high capital investment, critical role in production lines, 
and severe financial consequences of unscheduled downtime associated with CNC machines make their 
reliability and availability paramount concerns. Unexpected failures of key components, such as the 
spindle, guideways, or ball screws, can lead to catastrophic scrap loss, prolonged production stoppages, 
and costly emergency repairs. 

Traditional time-based preventive maintenance, while reducing some failure risks, often leads to 
unnecessary part replacements and resource wastage, as it does not account for the actual health 
condition of the equipment [2]. Condition-based maintenance, which relies on monitoring specific 
parameters like vibration levels, marks an improvement but typically depends on expert-defined 
thresholds and may lack prognostic capability. The advent of pervasive sensor technology and big data 
analytics has unlocked the potential for truly predictive maintenance. However, the complex, nonlinear, 
and temporal nature of machine tool degradation poses a significant challenge for conventional 
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statistical and shallow machine learning models [3]. These models often require extensive manual 
feature engineering and struggle to model long-term dependencies in time-series data [4]. 

Deep learning, a subset of machine learning characterized by deep neural networks with multiple 
processing layers, offers a powerful solution to these challenges. Its ability to automatically learn 
hierarchical feature representations from raw, high-dimensional data makes it exceptionally suited for 
analyzing complex sensor signals. Architectures like Convolutional Neural Networks (CNNs) excel at 
extracting spatial features from signal data, while Recurrent Neural Networks (RNNs), particularly 
Long Short-Term Memory (LSTM) networks, are designed to model temporal sequences and long-
range dependencies. This research posits that a synergistic deep learning model, integrating CNN and 
LSTM, can effectively capture both the spatial patterns in multi-sensor snapshots and the temporal 
evolution of the degradation process in CNC machines [5]. The primary objective of this study is to 
develop, implement, and validate such a hybrid deep learning framework for accurately predicting the 
Remaining Useful Life (RUL) of critical CNC machine tool components. By transitioning from a 
diagnosis of current faults to a prognosis of future health, this research aims to contribute to the 
development of more intelligent, resilient, and cost-effective manufacturing systems. 

2. Literature Review and Theoretical Framework 

The evolution of predictive maintenance methodologies reflects the broader technological 
advancements in data acquisition and analysis techniques. Early approaches predominantly relied on 
statistical process control and time-series analysis methods, such as autoregressive integrated moving 
average models, which provided foundational frameworks but were limited in handling the complex, 
nonlinear degradation patterns characteristic of sophisticated machinery like CNC machine tools [6]. 
The introduction of traditional machine learning algorithms, including support vector machines and 
random forests, marked a significant step forward, enabling more sophisticated pattern recognition 
from condition monitoring data [7]. These methods, however, continued to depend heavily on expert 
knowledge for feature engineering and selection, creating a bottleneck in system development and 
limiting adaptability to different failure modes or machine configurations. 

The emergence of deep learning has fundamentally altered this landscape by introducing models 
capable of automatic feature extraction from raw, high-dimensional data. Within the specific domain of 
industrial prognostics, several architectural paradigms have shown particular promise [8]. 
Convolutional Neural Networks have demonstrated exceptional capability in processing vibration 
spectrograms and other two-dimensional representations of sensor data, effectively identifying spatial 
patterns indicative of mechanical faults. Simultaneously, Recurrent Neural Networks, especially their 
variant Long Short-Term Memory networks, have proven adept at modeling temporal sequences, 
making them suitable for analyzing time-series sensor data where the order and historical context of 
measurements contain crucial information about degradation progression [9]. The fusion of these 
architectures represents a logical advancement, aiming to capture both the spatial features within 
individual data samples and the temporal dependencies across sequential observations. 

In parallel with algorithmic developments, significant research attention has been directed toward 
multi-sensor data fusion strategies [10]. The underlying principle is that different physical phenomena 
associated with mechanical degradation—such as vibration, acoustic emission, thermal changes, and 
power consumption—provide complementary information. Data-level fusion involves the direct 
combination of raw signals, while feature-level fusion combines extracted characteristics, and decision-
level fusion aggregates conclusions from multiple single-sensor models. The optimal fusion strategy 
remains an active area of investigation, balancing computational complexity with informational gain 
[11]. Furthermore, the formulation of the prediction target itself is critical. While binary classification 
(fault/no fault) and multi-class fault diagnosis are valuable, the regression-based prediction of 
Remaining Useful Life represents a more challenging but ultimately more useful paradigm for 
proactive maintenance planning, as it quantifies the time horizon for intervention [12]. 

Despite these advancements, a review of existing literature reveals several persistent gaps. Many 
studies validate models on standardized public datasets, such as those from bearing test rigs, which 
may not fully capture the complex operational environment and variable loading conditions of actual 
CNC machining centers. There is also a tendency to focus on a single component or failure mode, 
whereas industrial applications require systems capable of addressing multiple potential points of 
failure. Additionally, the practical challenges of model deployment, including computational resource 
requirements on the factory floor, real-time inference latency, and model adaptability to machine-to-
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machine variations, are often underexplored in theoretical research. This study addresses these gaps by 
developing and validating a comprehensive hybrid deep learning model on a fully operational CNC 
machine tool under realistic, variable loading conditions. It implements a multi-modal sensor fusion 
approach at the feature level and frames the output as a continuous RUL prediction, thereby bridging 
the divide between algorithmic innovation and practical industrial implementation. The theoretical 
framework underpinning this work integrates signal processing, deep neural network theory, and 
reliability engineering to create a cohesive. 

3. Experimental Methods 

The experimental methodology was designed to simulate real-world operational conditions and 
collect a comprehensive dataset for developing and validating the predictive maintenance model. The 
core of the experimental setup was a standard three-axis vertical CNC milling machine. To capture a 
holistic view of the machine's health, a multi-sensor monitoring system was deployed. Four types of 
sensors were strategically installed: tri-axial vibration accelerometers on the spindle housing and the Y-
axis servo motor to capture mechanical oscillations and imbalances; an acoustic emission sensor near 
the spindle to detect high-frequency stress waves generated by incipient cracks or bearing defects; a 
current transducer on the spindle drive to monitor load variations and electrical anomalies; and 
thermocouples on the spindle bearing housings and the ball screw nuts to track temperature rises due to 
friction and wear. All sensors were calibrated and connected to a high-speed data acquisition system 
capable of synchronous sampling. 

The experiment focused on accelerated degradation of the spindle bearing, a common critical point 
of failure. A batch of bearings was seeded with minor, controlled defects in the inner raceway to 
initiate the failure process. The CNC machine was then operated under a programmed cyclic load 
profile, simulating realistic machining cycles involving varying cutting forces and speeds. Data from 
all sensors was continuously collected at a predefined sampling rate throughout the entire run-to-failure 
lifetime of multiple bearing sets. This process was repeated to generate a sufficient dataset 
encompassing the complete degradation trajectory from healthy state to ultimate failure. The collected 
raw time-series data constituted the primary input for the model. 

The data preprocessing pipeline involved several crucial steps. First, data synchronization and 
alignment were performed to ensure temporal coherence across all sensor channels. Subsequently, 
noise filtering was applied using wavelet transform techniques to remove high-frequency electrical 
noise and low-frequency drift without distorting the underlying fault signatures. The continuous data 
stream was then segmented into fixed-length time windows, each representing a snapshot of the 
machine's multi-sensor state at a given time. The corresponding label for each window was its 
Remaining Useful Life (RUL), defined as the number of operational hours left until a predefined failure 
threshold (e.g., a sharp increase in overall vibration amplitude) was reached. The RUL label was 
formulated as a continuous value, transforming the problem into a regression task. 

The architecture of the proposed hybrid deep learning model, termed the CNN-LSTM network, was 
constructed as follows. The first stage consisted of multiple parallel one-dimensional convolutional 
layers, each processing input from a specific sensor modality or channel. These CNN layers were 
designed to perform automatic local feature extraction, identifying patterns like specific frequency 
components in vibration signals or transient spikes in acoustic emission. The outputs from these 
parallel CNN streams were then flattened and concatenated into a unified feature vector representing 
the spatial characteristics within each time window. This fused feature vector was then fed into a 
stacked LSTM network. The LSTM layers, with their memory cells and gating mechanisms, were 
responsible for learning the temporal dynamics and long-term dependencies across sequential time 
windows, effectively modeling how the extracted features evolved as the bearing degraded. The final 
layers consisted of fully connected dense layers that nonlinearly combined the high-level temporal 
features to output a single RUL prediction. For comparison, baseline models including a Support 
Vector Regression (SVR) model with handcrafted features (like root mean square, kurtosis, and 
spectral centroids), a standard Multi-Layer Perceptron (MLP), and standalone CNN and LSTM models 
were also developed and trained on the same dataset. All models were implemented using the 
TensorFlow framework and trained using the Adam optimizer, with mean squared error as the loss 
function. The dataset was split into training, validation, and testing sets in a chronological manner to 
prevent data leakage and ensure a realistic evaluation of prognostic performance. 
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4. Results 

The performance of the predictive models was rigorously evaluated on the unseen testing dataset. 
The primary evaluation metric was the Root Mean Square Error (RMSE) between the predicted RUL 
and the actual RUL, with lower values indicating higher accuracy. Secondary metrics included the 
Mean Absolute Error (MAE) and the Score function, which penalizes late predictions more heavily 
than early ones, reflecting the practical preference for conservative warnings. The quantitative results 
are summarized in the following tables, which compare the performance of the baseline models against 
the proposed CNN-LSTM hybrid. 

Table 1. Overall Predictive Performance Metrics for Different Models 

Model RMSE (hours) MAE (hours) Score Function 
Support Vector Regression (SVR) 18.74 15.22 245.6 

Multi-Layer Perceptron (MLP) 14.56 11.87 178.3 
Standalone CNN Model 12.31 9.45 132.1 

Standalone LSTM Model 11.89 9.12 121.8 
Proposed CNN-LSTM Hybrid 8.67 6.84 89.5 
Table 1 clearly demonstrates the superiority of the deep learning approaches over the traditional 

SVR model. The hybrid CNN-LSTM model achieved the best performance across all metrics, with an 
RMSE of 8.67 hours, representing a significant improvement of over 25% compared to the best 
standalone deep model (LSTM) and more than 50% compared to the SVR baseline. This substantial 
reduction in error underscores the effectiveness of combining spatial feature extraction with temporal 
sequence modeling. 

Table 2. Model Performance Across Different Phases of Bearing Degradation 

Degradation Phase CNN-LSTM RMSE 
(hours) 

LSTM RMSE 
(hours) 

CNN RMSE 
(hours) 

Early (Healthy to Incipient Fault) 12.45 15.88 16.72 
Middle (Progressive Degradation) 7.23 9.45 10.91 

Late (Severe Fault to Failure) 6.32 8.12 9.05 
A more granular analysis of performance across the degradation timeline, as shown in Table 2, 

reveals interesting insights. All models performed with less accuracy during the early phase, where 
fault signatures are subtle and buried in noise. However, the CNN-LSTM hybrid showed a relative 
advantage even in this challenging phase, likely due to the CNN's ability to detect weak spatial patterns. 
Its performance improved markedly during the middle and late phases as the fault features became 
more pronounced, and the LSTM component effectively leveraged the accumulated temporal history. 
This consistent accuracy across all phases is critical for reliable prognostics. 

Table 3. Contribution Analysis of Different Sensor Modalities to the CNN-LSTM Model 

Sensor Input Configuration RMSE (hours) Performance Change vs. Full Set 
Vibration Only 11.54 33.10% 
Acoustic Emission Only 13.27 53.10% 
Spindle Current Only 15.89 83.30% 
Temperature Only 21.45 147.40% 
Vibration + Acoustic Emission 9.82 13.30% 

To understand the value of multi-sensor data fusion, an ablation study was conducted, and the 
results are presented in Table 3. Using any single sensor modality led to significantly higher prediction 
errors. Temperature data alone yielded the poorest results, suggesting it is a lagging indicator. 
Vibration and acoustic emission data were the most informative individually. Crucially, the 
combination of vibration and acoustic emission already provided good results, but the inclusion of all 
four sensor types (the full set) yielded the lowest RMSE. This demonstrates that while certain sensors 
are primary indicators, the fusion of complementary information from diverse physical phenomena 
(mechanical vibration, stress waves, electrical load, thermal state) provides a more robust and accurate 
health assessment, allowing the model to cross-validate signals and improve prediction confidence. 

Graphical results further illustrated the model's effectiveness. The trajectory of the predicted RUL 
from the CNN-LSTM model closely followed the actual RUL curve for multiple test bearings, 
maintaining a narrow and consistent prediction horizon. In contrast, the predictions from baseline 
models showed larger deviations, especially during transition periods between degradation phases. The 
model successfully generated early warnings, typically 30-50 operational hours before the final failure 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.9, Issue 1: 47-52, DOI: 10.25236/AJETS.2026.090106 

Published by Francis Academic Press, UK 
-51- 

threshold, which is a practically useful lead time for scheduling maintenance interventions. 

5. Discussion 

The results unequivocally support the central hypothesis that a deep learning-based approach, 
specifically a hybrid CNN-LSTM architecture, can significantly enhance the accuracy of predictive 
maintenance for CNC machine tools. The marked performance gap between the proposed model and 
traditional methods like SVR highlights the limitations of manual feature engineering and linear 
models in capturing the complex, nonlinear degradation dynamics of mechanical systems. The deep 
learning models' ability to learn directly from raw or minimally processed sensor data is a major 
advantage, reducing dependency on domain expertise for feature selection and making the system more 
adaptable to different machine types or failure modes. 

The superior performance of the CNN-LSTM hybrid over both the standalone CNN and LSTM 
models underscores the complementary strengths of these architectures. The CNN component acts as 
an intelligent, adaptive feature extractor. It discerns local patterns within a time window—such as the 
specific frequency band where bearing defect frequencies emerge from the vibration spectrum or the 
characteristic burst pattern in acoustic emission signals. This automated feature learning is more 
comprehensive and potentially more sensitive than a fixed set of handcrafted features. The LSTM 
component then provides the essential temporal context. Bearing degradation is not a series of 
independent events but a continuous process where the current state is intrinsically linked to its history. 
The LSTM's memory cells effectively track this progression, learning the rate of degradation and 
recognizing trajectories that lead to failure. This synergy allows the model to not just diagnose the 
current severity of a fault but to forecast its future evolution accurately. 

The sensor fusion analysis offers critical practical insights. The poor performance of single-sensor 
models, particularly temperature, validates the need for a multi-sensor strategy. Different failure modes 
manifest differently across sensor modalities. For instance, a lubrication issue might cause a 
temperature rise before significant vibration changes, while a spall on a bearing raceway might 
generate a strong acoustic emission signal earlier than a current anomaly. A fusion-based system is 
therefore more robust and can provide early warnings for a wider variety of potential faults. It also adds 
redundancy, making the system less vulnerable to the failure of a single sensor. 

However, the research also reveals challenges, primarily during the early degradation phase. The 
higher prediction errors in this phase indicate the difficulty of detecting incipient faults. Future work 
could explore more sophisticated data augmentation techniques, semi-supervised learning to leverage 
unlabeled data from normal operations, or the integration of transfer learning from simulated data or 
other machines to improve early-phase sensitivity. Another consideration is the computational cost and 
model interpretability. While the model is highly accurate, its "black-box" nature can be a barrier to 
adoption in safety-critical applications where engineers need to understand the rationale behind a 
prediction. Developing methods for explaining the model's decisions, such as attention mechanisms or 
saliency maps highlighting which sensor or time period most influenced a prediction, would be a 
valuable direction. 

From an implementation perspective, the success of this model paves the way for its deployment in 
an edge-cloud computing framework. The feature extraction and initial processing could be handled by 
edge devices on the shop floor for low-latency monitoring, while the complex LSTM-based prognosis 
could be performed on a central cloud server that aggregates data from multiple machines, enabling 
fleet-wide health management and comparative analytics. 

6. Conclusion 

This research has successfully developed and validated a deep learning-driven framework for the 
predictive maintenance of CNC machine tools. By formulating the problem as a Remaining Useful Life 
(RUL) regression task and employing a hybrid CNN-LSTM neural network architecture, the study 
demonstrates a significant advancement over conventional predictive maintenance methodologies. The 
model effectively leverages multi-sensor data fusion, automatically learning discriminative spatial-
temporal features from raw vibration, acoustic emission, current, and temperature signals to accurately 
forecast the degradation trajectory of critical components like spindle bearings. Experimental results on 
a real CNC milling platform confirm that the proposed model achieves a substantial improvement in 
prediction accuracy, with lower root mean square error and more reliable early warnings compared to 
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traditional machine learning and standalone deep learning models. The analysis further elucidates the 
critical importance of integrating complementary sensor data to build a robust prognostic system. 

The implications of this work are substantial for the manufacturing industry. The ability to 
accurately predict failures with a sufficient lead time enables a true shift from schedule-based or 
reactive maintenance to a condition-based, predictive strategy. This translates directly into tangible 
benefits: minimization of unplanned and costly production stoppages, optimization of maintenance 
resources by performing interventions only when needed, reduction in spare parts inventory through 
better planning, prevention of secondary damage from catastrophic failures, and overall extension of 
machine tool service life. While challenges remain in further improving early fault detection and 
enhancing model interpretability, the findings firmly establish deep learning as a powerful and essential 
tool for building the intelligent, self-aware, and highly available manufacturing systems demanded by 
Industry 4.0. Future work will focus on extending the framework to other critical components, testing 
its generalizability across different machine models, and integrating it into a full-scale industrial digital 
twin for real-time lifecycle management. 
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