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Abstract: Contrastive learning aims to train an encoder in a self-supervised manner to obtain 
representations of input images. Traditional contrastive learning methods primarily model relationships 
between image categories. This approach allows the model to learn representations with strong instance 
discriminability but overlooks representations of local perceptibility in images. Therefore, to enhance the 
feature representation capability of contrastive learning, a method called Masked Contrastive Learning 
(MCLim) is proposed, which is based on masked image modeling. MCLim introduces the idea of masked 
image modeling in contrastive learning, utilizing a dual-branch contrastive learning structure. The first 
branch processes the image after being masked and fed into the network, enabling the model to 
simultaneously perform contrastive learning and restore the original input image. This approach aims 
to learn representations with both instance discriminability and local perceptibility. MCLim employs a 
method to restrict the size of the masked area to prevent negative impacts on model performance from 
feature augmentation. It adapts to various encoding networks by changing the size of the masked block. 
The projection layer in the first branch serves as both a decoder and reconstructs the input image. 
Experimental classification using MCLim on the Cifar10 dataset yields a Top1 accuracy of 89.23%, 
outperforming other algorithms in the same category. 
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1. Introduction 

In recent years, deep learning has achieved rapid development in the field of computer vision. 
However, deep learning typically relies on a massive amount of annotated data for model training to 
achieve good performance.When there is a scarcity of annotated data and an abundance of unannotated 
data, enhancing the feature representation capability of deep learning becomes a critical need. Self-
supervised learning is one effective approach to address this issue, enabling the use of large amounts of 
unannotated data for self-supervised training to improve feature extraction models[1].Contrastive learning, 
a typical method of self-supervised learning, leverages the ideas of comparing similar dataand instance 
discrimination tasks. It considers augmented images from the same original as similar samples, and those 
from different originals as dissimilar. By comparing different views of the same instance, the model 
learns more discriminative representations, enhancing the neural network's feature extraction capabilities 
for downstream tasks. 

Contrastive learning methods typically use a twin neural network architecture to encode input images 
and calculate contrastive loss. Factors affecting the quality of representations in contrastive learning 
include the construction of sample pairs, the choice of encoding networks, and the selection of training 
tasks. SimCLR[2] constructs positive pairs through rich image augmentations to learn features of similar 
samples more effectively. MoCo V3[3] introduces a more powerful encoding network, ViT[4], into the 
contrastive learning framework and stabilizes model training by freezing the first layer, enhancing the 
encoding capability of contrastive learning. BYOL[5] adds a prediction layer at the end of the first branch 
to predict the output of the second branch, transforming the contrastive task into a prediction task, thereby 
improving the model's learning of representations. 

Meanwhile, another self-supervised learning method, Masked Autoencoders[6] and SimMIM[7], 
follows the idea of masked language modeling from natural language processing.These methods 
randomly mask a large portion of the training images and use neural network models to reconstruct the 
masked images. By learning the local relationships within input images, these methods can learn internal 
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image representations and achieve excellent results in some computer vision tasks. 

Both methods have achieved great success in the field of self-supervised learning, prompting 
considerations on how to enhance the quality of image representations learned through contrastive 
learning using masked autoencoder methods. Contrastive Masked Autoencoders[8] incorporate 
contrastive learning into masked autoencoders, using a twin-network architecture with an online branch 
and a target branch. The online branch is an asymmetric encoder-decoder, and the target branch is a 
momentum-updated encoder. During training, the online encoder reconstructs the original image from 
the representation of the masked image, learning overall features. The target encoder inputs the complete 
image and enhances the discriminability of the features through contrastive learning with the online 
encoder, although its main task remains image reconstruction. 

Traditional contrastive learning methods focus only on learning discriminative representations of 
image instances. This paper introduces masked image modeling into contrastive learning, designing a 
method called MCLim. Unlike existing contrastive learning approaches, MCLim performs masking 
operations on most areas of the input image in the first branch. The first branch's projection layer output 
is upsampled to reconstruct the input image, learning both discriminative representations of image 
instances and local perceptibility representations simultaneously. MCLim uses a novel image 
augmentation method to prevent negative impacts from image augmentation methods on masked learning 
and does not introduce additional components, using only upsampling after the projection layer in the 
first branch to reconstruct the input image. 

2. Design Methods 

The framework of the MCLim model is illustrated in Figure 1. 
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Figure 1: MCLim framework 

MCLim is based on a twin neural network architecture, where the first branch consists of five 
modules:Data Augmentation, Masking, Encoding, Projection Head, and Upsampling. The second branch 
is comprised of three modules: Data Augmentation, Encoding, and Projection Head. The Data 
Augmentation module transforms the input image into two similar images through different feature 
enhancement techniques. The Masking module randomly covers parts of the image in the first branch, 
while the Encoding module encodes the input image into a feature vector using the ViT network. The 
Projection Head receives high-level feature representations from the encoding network and maps them 
to a lower-dimensional representation space. The Upsampling module reconstructs the output of the first 
branch’s Projection Head back to the input image size. MCLim employs a mean squared error loss and 
a weighted combination of contrastive loss, as shown in the figures. This section will provide a detailed 
introduction to each part. 

2.1 Data Augmentation Module 

The goal of the Data Augmentation module in MCLim is to generate similar positive samples through 
feature enhancement for contrastive learning. Rich image augmentation techniques significantly enhance 
model performance in contrastive learning methods by enabling the model to learn a more diverse and 
rich feature expression. This captures the intrinsic structure and patterns of the data, improving the 
model’s expressive capabilities. Furthermore, feature enhancement increases the model's generalizability, 
making it more effective in handling new tasks. The model, having learned feature expressions under 
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various transformations, can adapt to different data distributions and changes, thereby generalizing to 
new tasks. In contrast learning algorithms, both branches typically employ cropping and color distortion 
strategies. However, when the cropping area is too far apart, the two augmented images lack semantic 
relevance, which, after masking in the first branch, can amplify these differences and create false 
positives, thereby hindering contrastive learning. Unlike other contrastive learning methods, literature [8] 
indicates that feature enhancement techniques such as color distortion can reduce training results in 
masked image modeling tasks. 

Therefore, to balance the characteristics of masked autoencoders and contrastive learning, MCLim 
employs a new image augmentation method: the input image is randomly cropped and resized to its 
original size, with the cropping frame limited to 65%-90% of the original image area to prevent negative 
effects from cropping areas that are too far apart. The first branch’s input image does not undergo feature 
enhancement transformations to avoid affecting the mask learning performance; the second branch uses 
feature enhancement methods, such as Color Jitter, Grayscale conversion, and Gaussian blur, to allow 
the model to learn more image features.  

2.2 Masking Module 

The purpose of the Masking module in MCLim is to mask the image by a certain proportion, using 
learnable vectors to replace the masked parts input into the network. In masked image modeling, the 
masking method generally ensures block alignment. This is because when the size of the mask blocks 
aligns with the image blocks, edge processing is usually simpler and helps to avoid inconsistencies and 
artifacts at the edges. MCLim also uses block-aligned masking for the images. MCLim uses a high 
masking ratio, meaning the masked image blocks make up a significant proportion of the total image 
blocks and the masking blocks are uniformly distributed. As images are highly spatially redundant natural 
signals, a high masking ratio largely eliminates the information redundancy between image blocks, 
making it difficult for the model to easily extrapolate the task from visible neighboring image blocks. 
Uniform distribution ensures that there are not more masking blocks near the center of the image, 
avoiding potential center bias. 

Learnable vectors are vectors trained as parameters during the model training process, and their values 
are usually learned automatically during the training process. Because learnable vectors offer greater 
flexibility, the model can adaptively learn richer and more discriminative representations based on the 
task and data. In MCLim, learnable vectors replace the masked image blocks, and their dimensions are 
set to match those of the visible image blocks. Since using a mask affects the semantic information of 
the image, the second branch's image is input into the encoding network without masking to preserve the 
semantic integrity and discriminative nature of the image. 

2.3 Encoding Module 

The purpose of the Encoding module in MCLim is to encode input samples into feature vectors and 
map them to feature space. Compared to traditional convolutional neural network models, the ViT model 
uses a self-attention mechanism that captures global information in images more effectively, making it 
more effective at solving complex problems. Literature [5] introduces the ViT model into contrast 
learning algorithms and notes that training instability issues in the ViT model within contrast learning 
algorithms can be resolved by freezing the patch embedding layer parameter updates, enhancing the 
feature encoding capability of contrast learning. 

MCLim's encoding network uses ViT and freezes the patch embedding layer parameter updates. Since 
the first branch simultaneously undergoes masking and contrast learning, after training is completed, the 
first branch’s encoding network is retained for downstream task training. 

Assuming that the input sample for the first branch is { }Ns
i i=1

x
, the image is partitioned into blocks , 

where N is the number of image blocks.The visible image blocks are denoted as 
{ }v

i i=1
x

, and the invisible 

image blocks are replaced with a learnable vector { }u vu
i i=1

p
≠

 . After replacement, all image blocks are 

denoted as { } { }+
u vv u

i ii=1 i=1
x p

≠

, which are then input into the first branch encoder to obtain their feature 
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representation { }Ns
i i=1

z
. 

{ } { } { }( )+
N u vs v u

i 1 i ii=1 i=1 i=1
z F x p

≠
=

                                                    (1) 

Assuming the input sample for the second branch is , the divided image blocks are , which are then 

input into the second branch encoder to obtain their feature representation{ }
2

Ns
i i=

z
. 

{ } { }( )22 2
=

N Ns s
i ii= i=

z F x
                                                             (2) 

2.4 Projection Layer and Upsampling Module 

In MCLim, the projection layer module aims to map the high-dimensional representation of an image 
to a low-dimensional space, while the purpose of the upsampling module is to rearrange the output of the 
projection layer through channel shuffling and element reordering, resulting in a tensor that matches the 
dimensions of the input image. In contrastive learning methods, the projection layer maps the original 
data to a low-dimensional space and computes contrastive loss in this space, typically consisting of a 
single Multilayer Perceptronlayer. In masked image modeling methods, the decoder decodes the feature 
vectors output by the encoder into a reconstructed image and computes the reconstruction loss with the 
original image, typically using ViT encoding blocks. 

In MCLim, the projection layer uses a two-layer MLP, and experiments analyze the impact of 
different projection layer structures on model performance. Since Pixel Shuffle can reconstruct the details 
of high-resolution images without adding any additional parameters through feature mappings learned 
by the network, it is used to reconstruct the output of the first branch. 

The specific process involves: projecting the input { }Ns
i i=1

z
 through the first branching layer 1Τ  to 

obtain 
1z : 

{ }1
1z = ( )

Ns
i i=1

zΤ
                                                                   (3) 

The upsampling transformation of { }Ns
i i=1

h
 results in the reconstructed image block { }y

Ns
i i=1 : 

{ } 1y =PixelShuffle(z )
Ns

i i=1                                                          (4) 

The input { }
2

Ns
i i=

z
 to the second branching projection layer 2T  to obtain 

2z :. 

{ }2
2 2

z = ( )
Ns

i i=
zΤ

                                                                   (5) 

2.5 Loss Function 

The MCLim model performs both the masked image modelling task and the comparison learning 
task. For the masked image modelling task, the loss between the predicted value and the true value of the 
masked image block is calculated using the normalized pixels as the computed values and the Mean 
Squared Errorloss as the loss function, Equation as 6: 

{ } { }( )21MSE y
N Ns s

i ii=1 i=1
x

n
= −∑

                                                (6) 

n is the number of samples, 
{ }Ns

i i=1
x

is the true value of the first image block, 
{ }y

Ns
i i=1 is the predicted 

value of the first image block. 

For the contrast learning task, the projection layer output is used as the computed value and the 
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infoNCE loss is used as the loss function, as in Eq. 7:  

( )
( )

1 2

1 2
,

exp , /
L log

exp , /
i ik

i
i i i k

z z

z z U

τ

τ
= −

+
                                                 (7) 

where k∈{ }1 2， , ,Ui k  as in Eq.8, ( )1 2exp , /i iz z τ
 is the NPC multiplier, which shrinks the gradient 

in the loss function and causes the contrast learning model to rely on large training batches; 

( )
{ }

,
1,2 , 1, j

U exp , /k l
i k i j

l j B i
z z τ

∈ ∈ ≠

= ∑
 ，                                           (8) 

In order for the model to still achieve good results on small devices, the NPC multiplier is removed 
to obtain Decoupled contrastive lossas in Eq.9; 

1 2
, ,L , / logk

DC i i i i kz z Uτ= − +
                                                  (9) 

The overall learning objective of MCLim algorithm is a weighted combination of prediction loss and 
contrast loss, so the overall loss is defined as in Eq.10; 

{ } { }( )
( )
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λ  is the prediction loss weight,n is the number of blocked image blocks,
{ }Ns

i i=1
x

 is the true value of 

blocked image blocks,
{ }y

Ns
i i=1 is the predicted value of blocked image blocks,

1
iz is the output value of the 

i-th branch network of the first image,
2
iz  is the output value of the i-th branch network of the second 

image, ( )0 1τ ∈ ，  is the temperature coefficient,
l
jz
 is the output value of the rest of the images in the same 

batch after two branches respectively. 

3. Experiment and Analysis 

3.1 Experimental setup and parameters 

The experiments in this paper use Python 3.11 as the programming language, Pytorch as the deep 
learning framework, and CUDA module to accelerate the network training, and the hardware is the 12th 
Gen Intel Core i7-12700×20K@5.9GHz12 core CPU, 32GB RAM, and the NVIDIA GeForce RTX 3080 
12GB graphics memory GPU. 

In this paper, we choose to conduct experiments on CIFAR10 dataset.CIFAR10 dataset consists of 10 
classes of 32×32 pixel colour images with the following categories: planes, cars, birds, cats, deer, dogs, 
frogs, horses, boats, and trucks, and there are 6,000 images in each category. The downstream task is 
selected as the classification task and the evaluation metric is the TOP1 accuracy on CIFAR10. 

3.2 Experiment 

In this section, the number of training iterations is set to 100, using the AdamW optimizer, as the 
learning rate typically scales with an increase in batch size. The learning rate is set 

BatchSize 256rl × = .where is the base learning rate is rl . During the experiments, the mask ratio is set 
at 0.6. 

Using the MCLim method to compare with other methods, the results are shown in Table 1, where 
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the loss function of the MOCO V3 model is replaced with the DCL loss to avoid the batch size negatively 
affecting the MOVO V3 model.MCLim improves 1.07% over the comparative learning method, MoCo 
V3, 1.93% over the masked self-encoder method MAE and 1.71%, proving its stronger ability in learning 
image representations. 

The ViT network is replaced with Swin Transforms and HiViT networks, and since MCLim uses a 
block-aligned masking strategy, the mask block size is used 32×32 in order to fit its dividing block 
size.The experimental results show that when Swin Transforms and HiViT networks are used instead of 
the ViT network as an encoder, the accuracy rates are all have been improved, proving that MCLim can 
be effectively adapted with other network structures. 

Due to hardware limitations, the number of samples in the same training batch used in the MCLim 
experiments is 16, and the performance of the comparison learning algorithm is positively proportional 
to the number of samples in the same training batch, therefore, the limitations of the hardware conditions 
reduce the performance of the comparison learning algorithm to a certain extent, and the DCL loss used 
in MCLim alleviates this problem to a certain extent. Therefore, MCLim can still achieve good 
performance under limited hardware conditions. 

Table 1: Comparison of the Proposed Framework with Other Algorithms in This Work 

 Batch Size Bankbone depth Para(M) CIFAR10 
MOCO 128 ResNet50 - 25.56 74.1 
SimCLR 128 ResNet50 - 25.56 81.3 
MoCo v3 32 ViT 6 43.12 88.16 
SimMIM 32 ViT 6 43.12 87.04 
MAE 32 ViT 6 43.12 87.3 
CMAE 16 ViT 6 43.12 87.52 
MCLim 16 ViT 6 43.12 89.23 
MCLim 16 Swin T [2,2,6,2] 49.88 89.34 
MCLim 16 HiViT [2,2,10] 35.88 90.4 

3.2.1 Impact of Feature Enhancement on Model Performance 

Different from the previous comparative learning method, MCLim uses a new image enhancement 
method to avoid the negative impact of randomly cropping the region too far away on the model 
performance and the colour distortion to reduce the mask learning ability: the input image is randomly 
cropped and adjusted to the original size, limiting the cropping frame to 65%-90% of the original image 
area; the rest of the transformations are not carried out on the input image of the first branch; and feature 
distortions are used on the image of the second branch, such as the colour distortion. branch image using 
feature enhancement methods such as colour distortion. 

The data in Table 2 shows that adding appropriate feature enhancement in the second branch can 
effectively improve the model performance. The model performance is best when using the two feature 
enhancement methods of random colour distortion and random greyscaling, this is because most of the 
clipping blocks of the same image have similar colour distributions and the colour histogram itself is 
sufficient to differentiate between the images, the model can take advantage of this shortcut to solve the 
task. Therefore, the inclusion of colour distortion combinations in the second branch is crucial for model 
learning performance. 

Table 2: Impact of Different Feature Enhancement Methods on Model  

Crop 
(0.65-0.9) 

ColorJitter 
P=0.8 

Grayscale 
P=0.2 

Gaussian 
P=0.8 

Acc.Top1 

✔    88.84 
✔ ✔   89.1 
✔ ✔ ✔  89.23 
✔ ✔ ✔ ✔ 89.14 

3.2.2 Impact of projection layer on model performance 

Contrast learning algorithms aim to train encoders for use in downstream tasks, and in general 
contrast learning methods, the projection layer serves to map the raw data into a high-dimensional space 
for better extraction and representation of the data's features. In MCLim the first branch projection layer 
not only plays the above role but also needs to reconstruct the original image input. This section 
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investigates the effect of different projection layer structures on the model performance and the results 
are shown in Table 3. 

The experimental results show that the performance of the first branch projection layer using the two-
layer MLP model is higher than that of using Linear or ViT block, which is because the first branch 
projection layer not only needs to map the coded data into the high-dimensional space in order to extract 
and represent the features of the data in a better way, but also needs to decode these data representations 
into reconstructed outputs, i.e., the first branch projection layer needs to be involved not only in the 
comparative learning task but also in the decoding and reconstruction task. also participate in the 
decoding reconstruction task, while overly complex decoders will take part of the encoding function, 
resulting in the encoder performance is not fully exploited, and overly simple decoders are unable to take 
on the decoding task, so that the encoder is involved, resulting in its encoding capacity being shared. 

Table 3: Impact of Projection Head on Model Performance 

Projection Head CIFAR 10 
Linear 89.02 
2-layer MLP 89.23 
1 ViT blocks 87.77 

3.2.3 Impact of loss function on model performance 

MCLim defines the overall learning objective as a weighted combination of prediction loss and 
contrast loss, and this section analyses the impact of different training tasks and contrast loss weights on 
the model performance and proves it in experiments. 

The reconstruction loss and prediction loss are combined with the contrast loss respectively, and the 

experimental results are shown in Table 4. 1,recL is the reconstruction loss, the first branch outputs all the 

image blocks with the true value to calculate the MSE loss; For the prediction loss 1, preL
, the first branch 

is occluded from the image block output with the true value to calculate the MSE loss; For the DCL loss 
2L . The experimental results show that the accuracy of the model using predictive loss is significantly 

higher compared to reconstruction loss, this is because using predictive loss, the model focuses its 
learning ability on the masked part of the image blocks to better understand their content. 

Table 4: Impact of Pretext Tasks on Model Performance     

Loss CIFAR 10 

1, 2recL L+   88.71 

1, 2preL L+
 89.23 

In order to analyse the effect of predictive loss weights on model performance, the loss weightsλ  are 
set to 0, 0.5, 1, 1.5 and the experimental results are shown in Table 5. When the loss weight is 0, the 
model degenerates to the MOCO V3 algorithm using DCL loss, but the first branch uses a large scale 
masking operation, which makes the semantic information of the image incomplete, resulting in a 
degradation of the model performance. When the loss weight is increased from 0, the masked image 
modelling task is introduced in MCLim and the model performance is improved accordingly. 

Table 5: Impact of Contrastive Loss Weight on Model Performance 

λ   CIFAR 10 
0 84.7 
0.5 89.2 
1 89.23 
1.5 89.17 

4. Conclusion 

In order to improve the representation quality of contrast learning methods, this paper designs a 
contrast learning method that uses a masking approach to enhance feature representation, and verifies its 
effectiveness on the downstream task-image classification on the public dataset Cifar10. The method 
improves the model performance under small training batches by combining contrast learning and mask 
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self-encoder features, adding mask operations to the first branch input image, and using a projection layer 
to perform contrast learning and image reconstruction simultaneously, learning the maximum similarity 
of similar images while learning the internal connections of the images, and using the DCL loss for the 
contrast loss function. 
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