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ABSTRACT. The interval is viewed as basic knowledge granule and used to define 
the lower and upper approximations. This model is applied to interval-valued 
ordered decision information systems, and used to induce useful “at least and at 
most” decision rules. To obtain optimal decision rules, the concept of relative 
reducts of an interval is proposed, and the corresponding discernibility function is 
constructed for computing the relative ruduct.   
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1. Introduction  

Because of limited discriminatory power of the criteria and hesitation of the 

decision maker, dominance principle is often violated for some objects [1]. In this 

case, Pawlak rough set model [2], which concerns the discernibility between objects, 

can not cope with the inconsistency in an ODIS. So Greco et al[3] proposed the 

dominance-based rough set approach (DRSA) to solve the inconsistency problem. 

They also gave an algorithm for computing minimal decision rules[1]. For the 

attribute reduction problem in the ODIS, Susmaga et al[4] proposed reducts 

preserving an information measure called a quality of sorting. Inuiguchi, Yoshioka 

and Kusunoki [5] proposed several kinds of reducts and clarified relations among 

the proposed reducts and previous ones. Moreover, the DRSA has been extended to 

variable consistency dominance-based rough set approach[6], variable precision 
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dominance-based rough set approach[7], and stochastic dominance-based rough set 

approach [8]. The DRSA was also applied to decision rules acquisition and attribute 

reduction for varieties of other ODISs, such as incomplete ODISs [9], interval 

ODISs [10], and set-valued ODISs [11].  

Both the DRSA and its extended models take the dominating classes and 

dominated classes as basic knowledge granules. These models were successfully 

used to extract “at least” or “at most” decision rules. To obtain “at least and at most” 

decision rule, Guan et al[12] take “interval”, an intersection of the dominating class 

of one object and the dominated class of another object, as a basic knowledge 

granule, and use intervals to define the lower and upper approximations.  

In this paper, we will apply the “interval” to the interval-valued ordered decision 

information system (IVODIS). In Section 2, some notations and basic concepts for 

the ODIS and the original DRSA are introduced. Also, we briefly introduce the 

I-DRSA. In section 3, we apply the I-DRSA to the IVODIS. We discuss relative 

reducts and optimize “at least and at most” decision rules acqusition for based on 

interval knowledge granules. Finally, we conclude our work in Section 4. 

2. The original dominance-based rough set approach 

2.1 The ordered decision information system (ODIS) 

An information system is a quadruple ( , , , )S U AT V f= , where U  is called 

the universe of discourse; AT is a finite set of attributes; a AT aV V=  with aV  

being the domain of attribute a ; f  is an information function satisfying 

aVaxf ),( . Denote ( , ) ( )f x a a x=  for simplicity. 

In general, if the attributes contained in an information system are classified into 

the condition attributes( 1 2{ , , , }nC c c c= )and decision attributes( D ), then it is 

called a decision information system (DIS). In this case, AT C D=   and 

C D = . Without loss of generality, assume that { }D d= . The partition of U  



International Journal of New Developments in Engineering and Society 

ISSN 2522-3488 Vol. 3, Issue 2: 108-118, DOI: 10.25236/IJNDES.19215 

Published by Francis Academic Press, UK 

- 110 - 

determined by d  is denoted as 1 2{ , , , }rCl Cl Cl . 

Definition 1[3] In a decision information system (DIS), if all the condition 

attributes are criteria, then it is called an ordered decision information system (ODIS) 

or an ordered decision table (ODT). 

2.2 The original dominance-based rough set approach (DRSA) 

In an ODIS, the domain of a criterion a C  is completely preordered by an 

outranking relation a . For ,x y U , if x  is at least as good as y  with respect 

to criterion a , then it is denoted as ax y  or ay x . For B C , denote 

dominance relation as follows: 

{( , ) | , }B bR x y U U x y b B =      ,  

{( , ) , }B bR x y U U x y b B =       

Denote  [ ] { ( , ) }B Bx y U y x R =   ,   [ ] { ( , ) }B Bx y U y x R =   ,                                                                                

then [ ]Bx 
 and [ ]Bx 

 are called dominating class and dominated class of x .       

Definition 2[3] In an ODIS ( , { }, , )S U C d V f=  , for X U  and B C , 

let  

( ) { , [ ] }B B
R X x x U x X

 =   , ( ) { ,[ ] }B B
R X x x U x X

 =    ,                                                                           

( )BR X

 
and ( )BR X  are called the lower and the upperapproximation 

approximation of X .               

2.3 Interval Knowledge Granules for DRSA(I-DRSA)  
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For extracting the “at least and at most” decision rules with the decision part 

s d t  , where , ds t V , we proposed a new type of knowledge granules, called 

“interval”[12].  

Definition 3[12] In an ODIS ( , { }, , )S U C d V f=  , for B C  and 

( , )j i Bx x R , denote [ , ]i j Bx x = [ ] [ ]i B j Bx x  ={ , }i B B jy y U x y x   .We call 

[ , ]i j Bx x  an interval determined by ( , )j i Bx x R . For ( , )j i Bx x R , let 

[ , ]i j Bx x = . 

Taking intervals as basic knowledge granules, we can define the lower and upper 

approximations of X U  as follows. 

Definition 4[12] In an ODIS ( , { }, , )S U C d V f=  , for X U  and 

B C , let 

( )I

BR X ={( , ) ( , ) , [ , ] }j i j i B i j Bx x x x R x x X  ,                                                           

( )I
BR X ={( , ) ( , ) , [ , ] }j i j i B i j Bx x x x R x x X   ,                                                          

We cal ( )I

BR X and ( )I
BR X the Interval-lower and Interval-upper approximation 

of X . 

Using the I-lower approximations of 
t

sCl , from ( , ) ( )t

j i B sx x R Cl , we can 

inducing the certain “at least and at most” decision rules as follows:   

if [ , ]i j Bx x x , then 
t

sx Cl .Or if ( ( ) , , ( ))b B i jb x b b x   ( , , )s d t→   . 

3. Optimal decision rules acquisition in the IVODIS based on interval 

knowledge granules 
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3.1 I-DRSA established in the IVODIS  

An ordered decision information system is called interval-valued ordered 

decision information system(IVODIS), if aV  is a set of interval-valued numbers. 

We denote the interval number of x  under the attribute a  as follows: 

( , ) ( ) [ ( ), ( )]m Mf x a a x a x a x= = . The following Table 1 presents an IVODIS. 

Table 1 An interval-valued ordered decision information system 

U c1 c2 c3 C4 C5 d 

x1 [2, 2.4] [1.5, 3] [4, 4.8] [3, 3.6] [6,7.2] 3 

x2 [2.8,4] [2.1,2.7] [4.8,7.2] [3.6,4.8] [7.2,10.8] 2 

x3 2.4 [1.2,1.8] [4.8,7.2] [2.4,3.6] [4.8,6.0] 3 

x4 [1.2,1.6] [0.9,1.2] 2.4 [1.8, 2.4] [3.6,4.8] 2 

x5 [0.8,4] [2.1,3] [4.8,7.2] [1.2,4.8] [2.4 3.6] 1 

x6 [2, 2.8] [1.5,3] [4.8,6.4] [1.2,6] [7.2,8.4] 3 

x7 [2, 2.4] 1.8 [3.2,8] [2.4,5.4] [6,7.2] 1 

x8 [2.8,3.2] [1.5, 2.4] [4.8,8] [3.6,6] [7.2,10.8] 4 

Definition 5 In an IVODIS, for B C  and ( , )j i Bx x R , denote  

[ , ]i j Bx x =[ ] [ ]i B j Bx x  ={ , }m m m M M M
i B B j i B B jy y U x y x and x y x     .      

We call [ , ]i j Bx x  an interval determined by ( , )j i Bx x R .  

We will take intervals as basic knowledge granules to define the lower and upper 

approximations of X U  in the following . 

Definition 6 In an IVODIS ( , { }, , )S U C d V f=  , for X U  and B C , 

let 

( )BR X
={( , ) ( , ) , [ , ] }j i j i B i j Bx x x x R x x X  ,                                                                                               
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( )BR X ={( , ) ( , ) , [ , ] }j i j i B i j Bx x x x R x x X   .                                                                        

We call ( )BR X
and ( )BR X

 
the I-lower and I-upper approximation of X  

with respect to B .  

Let  

( )t

B smR Cl
={( , ) ( , ) ( ), [ , ] [ , ] for ( , ) ( )}t t

j i j i B s i j B p q B q p B sx x x x R Cl x x x x x x R Cl     . 

Then ( , ) ( )t

j i B sx x mR Cl  generates a minimal interval decision rule with 

s d t  . 

Example 1 In the IVODIS presented in the Table 1, we have  

1 1[ ] { }Cx x = , 2 2[ ] { }Cx x = , 3 2 3 8[ ] { , , }Cx x x x = , 4 1 2 3 4 7 8[ ] { , , , , , }Cx x x x x x x = , 

5 5[ ] { }Cx x = , 

6 6[ ] { }Cx x = , 7 7[ ] { }Cx x = , 8 8[ ] { }Cx x = , 1 1 4[ ] { , }Cx x x = , 2 2 3 4[ ] { , , }Cx x x x = , 

3 3 4[ ] { , }Cx x x = , 

4 4[ ] { }Cx x = , 5 5[ ] { }Cx x = , 6 6[ ] { }Cx x = , 7 4 7 8 3 4 8[ ] { , }, [ ] { , , }C Cx x x x x x x = = . 

3

2 3 2 4 1 4 2 4 3 1 1 2 2 3 3 4 4 6 6( ) {( , ),( , ),( , ),( , ),( , ),( , ),( , ),( , ),( , )}CR Cl x x x x x x x x x x x x x x x x x x =

,        

3

2 4 1 4 2( ) {( , ),( , )}CmR Cl x x x x = . 

4 2( , )x x  generates a minimal CD
-decision rule with decision part 2 3d  :  
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1 2 3 4([1.2,1,6] , , [2.8,4]) ([0.9,1.2] , , [2.1,2.7]) (2.4 , , [4.8,7.2]) ([1.8,2.4] , , [3.6,4.8])c c c c          

5([3.6,4.8] , , [7.2,10.8]) (2 , , 3)c d   →   ,                                                   

3.2 Retive reducts and optimal decison rules acqusition in IVODIS  

To compute the optimal decision rules, we will firstly discuss the reducts of the 

interval [ , ]i j Cx x  defined below.  

Definition 7 For ( , ) ( )t

j i C sx x R Cl  and B C , if B  is the miniman subset 

satisfy [ , ] [ , ]i j B i j Cd x x d x x= , then B  is called a relative reduct of [ , ]i j Cx x  

with respect to 
t

sCl . 

B  is a relative ruduct of [ , ]i j Cx x if and only if 

( ( ) , , ( )) ( , , )c B i jc x c c x s d t   →    is an optimal decision rule of 

( ( ) , , ( )) ( , , )c C i jc x c c x s d t   →   . 

Therefore, by the reducts of [ , ]i j Cx x , we can obtain all the optimal decision 

rules supported by objects in [ , ]i j Cx x . To compute reducts of [ , ]i j Cx x , we firstly 

give the judgment theorem. 

Theorem 1 For ( , )j i Cx x R  and B C , [ , ] [ , ]i j B i j Cd x x d x x= 

( , )iy x B  
 

or ( , )jx y B  
 

for any y  such that ( ) [ , ]i j Cd y d x x , 

where ( , )x y ={ ( ) ( )}b C b x b y   
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{ ( ) ( ) ( ) ( )}M M m mb C b x b y or b x b y=     and ( ) { ( , ) | }d X f x d x X=   .   
 

Proof. "" : Assume there exists y U  such that [ , ]i j Cdy d x x , both 

( , )iy x B  =  and ( , )jx y B  =
 

are satisfied. Then, b B  , 

( ) ( )ib y b x  as well as ( ) ( )jb x b y . So  we have [ , ]i j By x x . By the 

conditional assumption we can obtain ( ) [ , ] [ , ]i j B i j Cd y d x x d x x = , which is 

contradictive to ( ) [ , ]i j Cd y d x x . This indicates that ( , )iy x B  
 

or 

( , )jx y B  
 

for any y  such that ( ) [ , ]i j Cd y d x x . 

"" : Assume that [ , ] [ , ]i j B i j Cd x x d x x , then there exists at least one object 

[ , ]i j Bk d x x  such that [ , ]i j Ck d x x . From the conditional assumption we can 

derive that ( , )iy x B  
 

or ( , )jx y B   . Hence, there exists at least 

one attribute b B  such that ( , )ib y x  or ( , )jb x y . So, [ ]i By x   or 

[ ]j By x  . This is contradictive to [ , ]i j By x x . Therefore, [ , ] [ , ]i j B i j Cd x x d x x=  

must hold.  

Based on Theorem 1, we can construct a dominance discernibility function for 

[ , ]i j Cx x , which helps us compute the relative reducts of the interval [ , ]i j Cx x . 

Definition 8 For ( , )j ix x  ( )t

C sR Cl
,  let 

[ , ]

( ) [ , ]

([ , ] ) {[ ( , )] [ ( , )]}
i j C

s t i j C i j

d y d x x

x x y x x y 



 =    , 
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We call 
[ , ]([ , ] )s t i j Cx x  a dominance discernibility function of [ , ]i j Cx x

 
with 

respect to 
t

sCl . 

Based on the Definition 7, 8 and Theorem 1, we obtain the following Proposition 

1 by the Boolean reasoning technique [13].  

Proposition 1 For ( , )j ix x  ( )t

C sR Cl
 and B C , we have  

B  is a relative reduct of interval [ , ]i j Cx x  with respect to 
t

sCl  if and only if 

B  is a prime implicant of 
[ , ]([ , ] )s t i j Cx x , where b BB b =  . 

Example 2 (Continued from Example 1) For the IVODIS presented in the Table 

1, we have 
3

4 2 2( , ) ( )Cx x R Cl , and

4 2
[2,3] 4 2 4 2([ , ]

([ , ] ) {[ ( , )] [ ( , )]}
C

C dy d x x
x x y x x y 


 =    

 

1 2 4 5 3 4( ) ( )c c c c c c=      1 3 2 3 3 5 4( ) ( ) ( )c c c c c c c=       . 

So, the reducts of 4 2[ , ]Cx x  with respect to 
3

2Cl  are 1 3{ , }c c , 2 3{ , }c c , 

3 5{ , }c c and 4{ }c , we obtain the optimal decision rules as follows: 

1 3([1.2,1,6] , , [2.8,4]) (2.4 , , [4.8,7.2]) (2 , , 3)c c d     →   ,   

2 3([0.9,1.2] , , [2.1,2.7]) (2.4 , , [4.8,7.2])c c     (2 , , 3)d→   ,     

3(2.4 , , [4.8,7.2])c  5([3.6,4.8] , , [7.2,10.8]) (2 , , 3)c d   →   ,    

4([1.8,2.4] , , [3.6,4.8])c  (2 , , 3)d→   .    
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4. Conclusions 

We apply interval knowledge granules to interval-valued ordered decision 

information systems for knowledge reduction and optimal decision rules acquisition. 

By I-lower approximation, we can induce “at least and at most” decision rules. For 

rules optimization and attribute reduction, the relative reducts of an interval is 

proposed, and each reduct can induce an optimal decision rule supported by objects 

in the interval.  
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