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Abstract: Differential Evolution (DE) is an evolutionary algorithm that has become increasingly popular 
due to its effectiveness and efficiency. However, its adaptation for multi-objective optimization requires 
further investigation. To address this issue, a novel algorithm called ILSDEMO has been proposed, 
which incorporates indicator-based selection and local search into a self-adaptive DE. ILSDEMO 
employs an archive population to store non-dominated solutions, generating an initial population 
uniformly distributed over the feasible solution space using orthogonal design. Additionally, two variants 
of DE are used to expedite convergence, while q-Gaussian mutation is utilized to exploit better trial 
individuals. The k-nearest neighbor rule is used to eliminate crowded solutions, and indicator-based 
selection is employed to generate a new parent population without diversity preservation. The 
performance of ILSDEMO was investigated on the test instances from the ZDT series and DTLZ series 
in terms of the selected indicators. The results suggest that ILSDEMO accurately and evenly 
approximates the true Pareto front compared to NSGAII, IBEA, and DEMO. 
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1. Introduction 

Multi-objective optimization problems (MOPs), characterized by their inherent complexity and 
conflicting objectives, necessitate the development of efficient strategies to balance these diverse criteria. 
In response to this challenge, a multitude of algorithms have been devised, each aiming to effectively 
address MOPs. Notably, Differential Evolution (DE) [1] has emerged as a promising contender within the 
realm of multi-objective optimization, exhibiting remarkable performance and demonstrating its 
potential to efficiently navigate the complex landscape of conflicting objectives. A detailed survey of 
some DE-based MOEAs has been conducted [2], discussing their advantages and disadvantages. Most of 
these methods employ the widely used DE/rand/1/bin variant. While they have demonstrated 
effectiveness in accelerating the search and enhancing results, the review also reveals a latent issue with 
DE: the tendency to become trapped in local optimum fronts. To address this, diversity maintenance 
schemes must be incorporated into DE-based MOEAs. Additionally, handling the non-dominance 
relation between the trial individual and the target individual poses a challenge in these algorithms. 

To tackle the aforementioned challenges, a novel algorithm, ILSDEMO, is proposed in this paper. It 
is built upon the "DE/best/1/bin" and "DE/best/1/exp" variants [1] of DE. Prior experimental validation 
by E. Mezura-Montes [3] revealed that, regardless of the problem characteristics, the "DE/best/1/bin" 
variant exhibited the highest competitiveness in terms of both quality and robustness of results among 
eight DE variants. Different from the "DE/best/1/bin" variant, the "DE/best/1/exp" variant allows larger 
mutation blocks to be inherited, which helps the algorithm escape from local optimal solutions on certain 
problems and enhances its global search capability. While several researchers have attempted to leverage 
these variants for solving MOPs [4,5], our approach distinguishes itself in several key aspects. Firstly, 
ILSDEMO initializes the parent population using the orthogonal design method [6], which ensures a 
diverse initial population. Secondly, an archive population is employed to store non-dominated solutions, 
thereby maintaining a repository of promising candidates. Additionally, a k-nearest-neighbor rule is 
adopted to guarantee a uniformly distributed archive population in the objective space, enhancing the 
algorithm's ability to explore diverse regions of the search space. To generate a new parent population, 
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an indicator-based selection mechanism is utilized, which leverages the performance indicators to 
identify promising individuals. Furthermore, the two DE variants and their corresponding parameters are 
selected in a self-adaptive manner, enabling the algorithm to adapt to the specific characteristics of the 
optimization problem. Lastly, a local search operator, specifically the q-Gaussian mutation [7,8], is applied 
to refine trial individuals that demonstrate superior performance compared to target individuals. This 
refinement step further enhances the algorithm's ability to find optimal solutions. 

The remainder of the paper is organized as follows. Section 2 defines several notable concepts 
pertaining to multi-objective optimization problems (MOPs) and briefly introduces the principles of 
indicator-based selection, differential evolution, and q-Gaussian mutation. In Section 3, a comprehensive 
account of the ILSDEMO algorithm is provided, including a detailed description of its key components. 
Section 4 presents an experimental investigation of the algorithm on the ZDT-series and DTLZ-series 
benchmarks, along with a comparative analysis of the results obtained with selected multi-objective 
evolutionary algorithms. Section 5 summarizes the key findings and conclusions of the paper. 

2. Preliminaries 

Before delving into the details of the ILSDEMO algorithm, it is essential to introduce some 
fundamental concepts and theories that provide the necessary background for the algorithm's 
comprehension. These preliminary sections not only lay the foundation for understanding the principles 
and design of ILSDEMO but also aid in appreciating the algorithm's strengths and characteristics in 
solving multi-objective optimization problems. In the following sections, multi-objective optimization, 
orthogonal design, indicator-based selection, differential evolution, and Q-Gaussian mutation are 
introduced sequentially. 

2.1. Multi-objective Optimization 

In contrast to single-objective optimization problems (SOPs), MOPs involves the optimization of 
multiple objectives. For the purpose of this discussion, it is assumed that all objectives are to be 
minimized. The problem can be formulated using Formula 1. 
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For the sake of facilitating the forthcoming discussion, we hereby present a comprehensive 
compilation of mathematical terminologies in MOO below. 

Definition 1 (Pareto Dominance,  ) 
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Definition 2 (Non-dominated, ~) 
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Definition 3 (Non-dominated set, NDS) 

The non-dominated set, denoted as }:|{ ** XXNDSXiffXNDS
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Definition 4 (Pareto optimal solution) 

A feasible solution SX ∈*
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Definition 5 (Pareto optimal set, PS) 

The Pareto optimal set, denoted as }:|{ ** XXSXiffSXPS
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Definition 6 (Pareto front, PF) 

The Pareto front is defined as }|)({ PSXZXzPF ∈∈=




. 

In accordance with definition 5, PS is the ultimate goal of optimization. However, the PS, especially 
for continuous MOPs, cannot be completely represented owing to the enormous amount of solutions. 
Moreover, too many solutions make no sense to help decision makers. Therefore, an appropriate selection 
for MOPs is to find a non-dominated set representing the Pareto optimal set as far as possible. 

2.2. Orthogonal Design 

The experimental design is an efficient approach for organizing experiments to enable the analysis of 
obtained data, leading to valid and objective conclusions [9,10]. In experimental designs, the decision 
variables are designated as factors, and the range of each factor is partitioned into multiple levels. 
Subsequently, all possible combinations of factors across all levels are tested, ultimately leading to the 
selection of the optimal combination. Given n factors at q levels, the total number of combinations is 
calculated as nq . When n and q are small, evaluating all combinations may be feasible. However, for a 

large number of factors and levels, testing all combinations becomes impractical. Therefore, a 
representative subset of combinations is selected for evaluation. Orthogonal design (OD) was developed 
for this purpose and has been successfully employed in evolutionary algorithms [11,12]. 

In OD, an orthogonal table provides some representative combinations of the factors at different 
levels. Let Lm(q, c) be an orthogonal table for c factors and q levels, where L denotes a Latin square and 
m is the number of the constructed combinations of the levels ( 0,, 1

1 >== −
− jcqm q
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orthogonal table with m rows and c columns, each column denotes a factor and each row indicates a 
combination of the levels regarding the factors. The orthogonal table has some characteristics: 1) every 
level has the same occurrence number, i.e., m/q times, in any column; 2) every combination of two levels 
with respect to two factors has the same occurrence number, i.e., m/q2; 3) the selected combinations are 
uniformly distributed over the whole space of all the possible combinations; 4) if any two columns are 
swapped, the altered table is still an orthogonal table; 5) if some columns are removed from the 
orthogonal, the modified table is still an orthogonal table. A positive integer j should be found to 
minimize m with a constraint c ≥ n (n is the number of decision variables). 

In this study, the algorithm described in [11] is employed to produce an orthogonal table Lm(q, c). 
Each element of the table, a (i, j), indicates the level of the jth factor in the ith combination in Lm(q, c). 
If c>n, the last c-n columns will be deleted to get an orthogonal table with n factors. An element of the 
table is calculated as formula 2. 
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Here, lj and uj are the lower bound and the upper bound of the jth decision variable respectively, and 
the domain is quantized q-1 fractions. 

2.3. Indicator-based Selection 

Indicator-based selection emerged from IBEA was first proposed by Zitzler [13]. IBEA is based on 
quality indicators where a function I assigns each Pareto set approximation a real value reflecting its 
quality, and thus the optimization goal becomes the identification of a Pareto set approximation that 
minimizes (or maximizes) I. IBEA only compares pairs of individuals instead of entire approximation 
sets. The main advantage of the indicator concept is that no additional diversity preservation mechanisms 
are required. 

A binary quality indicator is a function that maps multiple Pareto set approximations to a real number, 
and can be used to compare the quality of two Pareto set approximations. The indicator also can be used 
to compare two single solutions, and thus can serve for the selection process of evolutionary algorithms. 
As suggested in the literature [13,14], the majority of the multi-objective ranking techniques in the literature 
are easily adaptable into binary quality indicators. Here, the epsilon indicator εI , which will be utilized 
in the algorithm, is solely introduced. The indicator quantifies the difference in quality between two 
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solutions. It is defined as formula 3. 
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In order to assign fitness to the individuals, one of the following two schemes can be chosen: 1) One 
approach is to simply sum up the indicator values for each individual paired with the rest of the population 
as shown in formula 4. 2) Another approach is to amplify the influence of dominating individuals over 
dominated ones as shown in formula 5. Here, the parameter k is a scaling factor depending on the 
indicator and the problem. 
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The fitness values of the individuals produce a total ordering relation of the whole population P. As 
proved by zitzler [13], εI  is dominance preserving. Thus, selection can be performed on the population 
P according to the orders of the fitness values. 

Definition 7 (Dominance preserving) A binary quality indicator I is denoted as dominance preserving 
if: 
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2.4. Differential Evolution 

Differential evolution, proposed by Storn and Price [1], is one of the most popular meta-heuristic 
optimizers, capable of handling non-differentiable, nonlinear, high-dimensional, multimodal continuous 
optimization problems. It has a concise idea but a strong global convergence. DE generates offspring by 
perturbing solutions with scaled differences of randomly selected vectors instead of the operations of 
crossover and mutation used in conventional evolutionary algorithms [15]. 

The proposed algorithm will utilize two variants of DE, namely DE/best/1/bin and DE/best/1/exp, 
which use binomial crossover and exponential crossover respectively [1]. The main difference between 
binomial crossover and exponential crossover is the fact that the components inherited from the mutant 
vector are arbitrarily selected and usually scattered in binomial crossover while one gene block of the 
mutant vector is inherited in exponential crossover. The following two key program segments illustrate 
the procedures of them. Here, D is the dimension of the decision variable, randint(1, D) denotes 
generating a random integer number between 1 and D, r1 and r2 are two randomly generated integers 
with uniform distribution and their values are lower than or equal to the population size and mutually 
different, best is a randomly generated integer with uniform distribution and less than the size of the non-
dominated solution set, F and CR represent the scaling factor and the crossover probability respectively. 

Program segment 1 
jrand = randint(1, D) 
for j=1 to D do 
  if rand(0,1)<CR || j == jrand then 
     Vj

i = Xj
best + F*(Xj

r1-Xj
r2) 

  else 
     Vj

i=Xj
i 

  endif 
endfor 
Program segment 2 
    j=randint(1, D) 
    k=0 
    do 
      Vj

i = Xj
best + F*(Xj

r1-Xj
r2) 

      j = (j+1) % D 
      k++ 
    while (rand(0,1)<CR && k<D) 
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2.5. Q-Gaussian Mutation 

The q-Gaussian distribution [ 16] allows to control the shape of the distribution by setting a real 
parameter q and can reproduce either finite second moment distributions, like the Gaussian distribution, 
or infinite second moment distributions, like the heavy tail Lévy distribution.  

One of the most interesting properties of the Gaussian distribution is that it maximizes, under certain 
constraints, the Boltzman-Gibbs entropy which is defined as formula 6. 

∫
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Because the Gaussian distribution cannot represent well correlated systems with an infinite second 
moment, Tsallis [17] proposed a generalized entropy form as formula 7. 
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The q-Gaussian distribution arises when maximizing the generalized entropy form given by formula 
7. The parameter q controls the shape of the q-Gaussian distribution. The q-Gaussian distribution 
reproduces the usual Gaussian distribution for q=1. When q=(3+m)/(1+m) and 0<m<∞, it becomes a 
Student’s t-distribution with m degrees of freedom. The q-Gaussian reproduces the Cauchy distribution 
for q = 2. When q<1, the q-Gaussian distribution has a compact form. When -∞<q<3, the q-Gaussian 
distribution density is given as formula 8. 
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In formula 8, x
qe  is defined as formula 9. The q-mean qµ  and q-variance qσ  are defined as 

formula 10 and formula 11 respectively. qA  is the normalization factor and qB  controls the width 

of the q-Gaussian distribution and is given by ( ) 12)3( −
−= qq qB σ . A random variable x following a q-

Gaussian distribution with qµ  and 2
qσ  is denoted by ),(~ 2

qqqNx σµ . The generalized Box-

Muller method can be used to generate q-Gaussian distribution for -∞<q<3. As described in [7], larger 
values of q result in longer tails of the q-Gaussian distribution. The algorithm given by [7] is employed to 
mutate a promising individual. 
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3. The Proposed Method 

3.1. The Motivation 

In evolutionary algorithms, many metrics such as convergence, accuracy, speed, and stability are 
employed to measure the performance of the algorithm. Besides, uniformity of the PF also acts as an 
important performance metric in MOEAs. However, a single method cannot perform well in terms of all 
the metrics [18]. Take three popular algorithms for example. NSGAII performs well on two-objective 
problems in terms of convergence. Nevertheless, it usually cannot reach desirable results on three-
objective problems [19]. SPEA2 also works well on two or three-objective problems, but has a deteriorated 
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convergence and time performance with increasing number of objectives. PESAII [20] performs well in 
terms of convergence, but like NSGAII, it also relies on the quality of the initial population, and when 
dealing with large-scale or high-dimensional optimization problems, the computational cost and 
implementation difficulty of the algorithm may increase significantly. 

In order to get an overall promotion in multiple metrics, some ways from different perspectives are 
worth trying. In Pareto rank based methods, the running time of non-dominated sorting and maintaining 
the diversity of the obtained non-dominated front all can be the starting points to improve the 
performance. Moreover, it is preferable to employ simple and efficient variation operators, such as DE 
and particle swarm optimization, to improve the time performance of the algorithm. In addition, using 
different selection operators to adjust the selection pressure and employing local search operators to 
improve the accuracy of the results are also popular in recent years [21]. Recently, self-adaptive parameters 
and strategies have received more and more attention due to their significant impacts on the performance 
of the algorithms. 

Based on the above considerations, we propose a novel MOEA which mainly incorporates orthogonal 
design, self-adaptive DE, local search, indicator-based selection, and updating method using k-nearest-
neighbor rule. 

3.2. Population Initialization 

The state of the initial population usually has an effect on the results. Experimental design methods 
such as uniform design and orthogonal design are statistically sound [10] and popular in many disciplines. 

In our method, orthogonal design is utilized to generate an initial population where the individuals 
scattered uniformly over the feasible solution space, so that the algorithm can evenly scan the search 
space and locate the promising solutions quickly.  

3.3. Variation Operators 

3.3.1. Self-adaptive Differential Evolution 

In self-adaptive DE, not only the two control parameters but also the strategies are determined self-
adaptively to avoid early stagnation. More specially, the control parameters and the strategy are encoded 
into the individuals. Initially, the scaling factor and crossover probability are randomly initialized within 
[0.2, 0.8] and [0.7, 1.0] respectively. One of the strategies, DE/best/1/bin or DE/best/1/exp, is randomly 
assigned to every individual. At the end of each iteration, the means and variances of two parameter 
values collected from the improved individuals are calculated to build two Gaussian models. The 
unimproved individuals will be assigned new parameter values by sampling the Gaussian models. 
Moreover, the strategies of these individuals will be reinitialized according to the probabilities of the two 
strategies based on the improved individuals. 

3.3.2. Local Search 

The purpose of local search methods is to enhance the exploitation capability of the algorithm. Prior 
works include limited neighborhood examination [ 22], gradient-based offspring search [ 23], and RBF 
surrogates for sparse point objectives prediction [24]. A PF model-driven local search accelerates PF 
exploration/exploitation [25]. Different from other local search methods in the literature of MOEA, q-
Gaussian mutation is used to perform exploitation once the trial individual is better than the target 
individual. But the replacement scheme is noticeable in view of the fact that the comparison of the 
solutions for MOPs is distinct from that of SOPs. In this algorithm, if the individual obtained by local 
search dominates the target individual, the latter will be replaced by the former. Otherwise, the target 
individual remains unchanged. In either case, the trial individual should be used to update the archive 
population in order to avoid neglecting possible improvement on the distribution of the archive 
population. 

3.4. The Selection Operator 

In SOPs and MOPs, the selection operator adjusts best individuals for next-gen variation. In MOPs, 
diversity in objective space is crucial alongside convergence. NSGA-II's early-stage crowding selection 
maintains parent uniformity but fails to accurately reflect solution density in multi-objective problems, 
particularly beyond two objectives. Consequently, NSGA-II's diversity performance is acceptable only 
in two-objective scenarios, though extreme solution propagation mitigates this. Indicator-based selection 
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enhances overall parent uniformity but risks losing extreme solutions, degrading coverage and exploiting 
them further. 

This study utilizes indicator-based selection to create a new parent population from a merged set of 
old and archived individuals. Duplicates are removed, and extreme solutions are prioritized with low 
indicators. Formula 5 is adapted to Formula 12 for consistent minimization. If the merged set does not 
exceed the target size, all propagate; otherwise, new individuals are added or the set is reduced by 
iteratively removing the individual with the highest indicator and updating others, until the desired size 
is achieved. 
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3.5. The Updating Rule 

Despite its effectiveness in seeking diverse solutions, indicator-based selection falls short of 
achieving optimal uniformity compared to algorithms like SPEA2. To enhance uniformity in both 
approaches, an updating mechanism leveraging nearest neighbor is proposed for the archive population. 
When the non-dominated solutions exceed the archive limit, their cumulative Euclidean distances 
(density) to k nearest neighbors (k=2*(m-1), m=objective count) are computed. The solution with the 
least density is removed, updating densities of others, and this process iterates until the archive size is 
reached. 

3.6. The Framework of the Proposed Algorithm 

Based on the above design, the procedure of the proposed ILSDEMO algorithm for solving MOPs is 
summarized in Algorithm 1. 

Algorithm 1  ILSDEMO 
1: Set n=0. Initialize the population Pn{(Xi,Fi,CRi,Si),i∈[1,NP]} using OD 
2: Evaluate Pn 
3: Copy the non-dominated solutions to the archive population PA. 
4: while the termination criteria are not satisfied do 
5:  Set n = n + 1 
6:  for i=1 to NP do 
7:    select r1≠r2 ∈{1, 2, …, NP} randomly 
8:    best∈{1,2,…,fsize} //fsize is the size of the non-dominated set in PA. 
9:    Perform program segment 1 or 2 using Si,Fi,CRi 
10:   Evaluate Vi 
11:   if f(Vi) is non-dominated by f(Xi) then 
12:      if f(Vi) dominates f(Xi) then 
13:        Mark f(Xi) as an improved individual 
14:      end if 
15:      Perform q-Gaussian mutation on Vi 
16:      Add Vi to PA using k-nearest neighbor rule 
17:   end if 
18:   if f(Vi) dominates f(Xi) then 
19:      Xi = Vi 
20:   end if 
21:  endfor 
22:  Build Gaussian Models using the F and CR values of the improved individuals 
23:  Calculate the probabilities of the strategies based on the improved individuals 
24:  Generate Pn+1 based on Pn and PA using indicator-based selection. 
25:  Reinitialize F, CR, and S for the unimproved individuals according to the above models 
26: endwhile 

4. Experiments 

In this section, the performance of ILSDEMO is experimentally investigated, compared with NSGAII, 
IBEA, and DEMO, which are renowned for their distinctive attributes, manifesting diverse strengths and 
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applicability across various problem domains, commonly serving as benchmark algorithms for 
comparative analysis. The comparative assessment is conducted utilizing two comprehensive test suites 
and three rigorous performance metrics, with statistical analysis employed to discern the outcomes. All 
the experiments are implemented in VC6.0, Matlab 7.1, Sigmaplot 12.0 and run on Intel i5 760 2.8GHz 
machines with 4GB DDR3 RAM. 

4.1. Performance Metrics 

In general, the quality of the non-dominated sets should be evaluated according to the convergence 
and the diversity in the objective space. The convergence depicts the closeness of the final non-dominated 
solutions to the true PF, whereas the diversity aims at the uniformity and the coverage of the final solution 
set along the true PF. A number of performance metrics, such as hypervolume (HV) [26], generational 
distance (GD) [27], inverted generational distance (IGD) [27], spacing metric (Spacing) [28,29], set coverage 
(SC), among others, have been proposed. However, none of the performance metrics can reliably evaluate 
both performance goals [30]. Given that IGD and HV concurrently account for the convergence and 
diversity of the solution set [ 31], while the Spacing metric precisely captures the uniformity of the 
distribution of the solution set in the objective space, these three metrics are selected for comparing the 
non-dominated solutions obtained by the four algorithms. A brief description of the metrics is given as 
follows.  

4.1.1. HV Metric 

HV metric, originally proposed by Zitzler and Thiele [32], computes the volume in the objective space 
covered by the non-dominated solutions and a reference point. Coello Coello, Van Veldhuizen and 
Lamont [33] described it as the Lebesgue measure Λ  of the union of hypercubes enwrapped by a non-
dominated set B and a bounding reference point zr which is dominated by all points. The formalization 
is shown as formula 13. As elaborated by Knowles [30], the hypervolume metric is the only unary indicator 
that is capable of detecting that solution set A with a low indicator value is not better than B with a high 
value. 
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In subsequent experiments, a fast algorithm termed HSO (Hypervolume by Slicing Objectives)[34] 
will be utilized for the computation of hypervolume, and the difference in hypervolume with respect to 
a reference set RS will be adopted as a performance indicator designated as HV*. The indicator value is 
defined as formula 14. Hence, a smaller value of HV* corresponds to a higher quality. 

),(),(* ZrAHVZrRSHVHV −=                              (14) 

4.1.2. IGD Metric 

Suppose P* and P represent a uniformly sampled solution set along the true PF and a non-dominated 
solution set obtained by an algorithm respectively. The mean distance from P* to P is calculated as 
formula 15: 

*

),(
)*,( *

P

Pvd
PPD Pv

∑
= ∈

                                 (15) 

where ),( Pvd  indicates the minimum Euclidean distance between v and the points in P. If P* can 
represent the PF very well, the metric can measure both the convergence and the diversity while GD 
metric can only measure the convergence. A small value for IGD is desirable as it indicates better 
performance of the algorithm in terms of convergence and distribution. 

4.1.3. Spacing Metric 

The Spacing metric measures how evenly the points in the approximation set are distributed in the 
objective space. An enhanced version of the metric will be employed, taking into account the Euclidean 
distances between the two extreme endpoints of the non-dominated front and their corresponding 
endpoints on the PF. A smaller spacing value indicates the solution set has a better spread. The metric is 
given by formula 16 where fd  and ld  are the Euclidian distances between the extreme solutions in PF 
and NDS, id  denotes the distance between the adjacent solutions via sorting one objective, and d  
denotes the average of id , ].1,1[ −∈ NDSi Although the metric is utilized to measure the diversity of non-
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dominated set extensively, it only works well for two objective problems due to the calculation method 
of di. 

dNDSdd

dddd

lf

NDS
i ilf

)1(

1
1

−++

∑ −++
=∆

−
=                               (16) 

4.2. Parameters Settings 

According to the preliminary experiments, the common parameters are set as follows: NP=50, 
NA=100 (150 for DTLZ-series), F∈[0.2, 0.8], CR∈[0.7,1.0], RUNs=30, Max_Evals=50000 (100000 
for DTLZ-series). Here, NP represents the parent population size, NA denotes archive population size, F 
and CR are the scaling factor and crossover rate of DE respectively, RUNs and Max_Evals indicate the 
number of runs and evaluations in one run respectively. In addition, a factor k is set to 0.02 in indicator-
based selection. In IBEA and NSGAII, NO (=50) indicates the offspring population size, PC (=0.8) and 
PM (=0.1) represent the probabilities of simulated binary crossover (SBX) and polynomial mutation 
respectively, eta_cross (=20) and eta_mut (=20) are the distribution indices of SBX and polynomial 
mutation respectively. In the computation of performance metrics, the objective values are normalized 
using the arctan function and subsequently mapped onto the interval [0, 1]. Additionally, the objective 
value of each reference point is set to 1.0. 

4.3. Experimental Results and Discussions 

In this section, the experimental results obtained by ILSDEMO, NSGAII, IBEA, and DEMO on the 
DTLZ-series and ZDT-series test instances are presented and discussed. The ZDT-series comprises two-
objective problems, with the dimension of decision variables set to 30 for ZDT1, ZDT2, and ZDT3, and 
10 for ZDT4 and ZDT6 in the conducted experiments. The DTLZ-series, on the other hand, represents 
scalable problems. For the DTLZ-series, the objective dimension is fixed at 3, with the dimension of 
decision variables set to 7 for DTLZ1, 12 for DTLZ2-6, and 22 for DTLZ7 respectively. 

According to the HV* metric, Figures 1, 2, and 3 demonstrate the optimal approximations to the true 
PFs achieved by the four algorithms on the ZDT-series and DTLZ-series test instances. 

Figure 1 reveals that the non-dominated solutions attained by ILSDEMO for the ZDT-series exhibit 
a more uniform distribution along the non-dominated front, indicating promising approximations across 
all algorithms. In contrast, NSGAII and DEMO exhibit seemingly inferior diversity, while IBEA 
maintains the worst distribution due to its inability to effectively retain extreme solutions, resulting in 
incomplete coverage of the non-dominated front. 

As evident from Figures 2 and 3, ILSDEMO achieves more accurate and uniform approximations to 
the true PFs of the DTLZ-series. Specifically, for DTLZ1, IBEA's solutions exhibit a more even 
distribution, while NSGAII maintains the worst distribution. For DTLZ2 and DTLZ4, NSGAII and 
DEMO display similar distributions, with IBEA exhibiting the worst distributions. While IBEA's 
solutions demonstrate a certain degree of uniformity in the centers of the fronts, significant gaps are 
observed between the centers and edges, along with the loss of some extreme points of the three 
objectives. For DTLZ3, NSGAII's approximate front is the worst due to outliers, while DEMO 
outperforms IBEA. For DTLZ5 and DTLZ6, ILSDEMO and DEMO yield similar distributions and 
accuracies, while IBEA produces the worst results. Finally, for DTLZ7, ILSDEMO approaches the true 
PF more evenly, while the non-dominated front obtained by NSGAII resembles that of DEMO. 

To gain further insight into the performance of ILSDEMO, a comparison with the other three 
algorithms is conducted based on the convergence speed, which is quantified by the average HV* values 
as a function of the number of function evaluations. Figure 4 clearly demonstrates a consistent ranking 
in terms of convergence speed among the four algorithms: ILSDEMO exhibits the fastest convergence, 
followed by DEMO, NSGAII, and finally IBEA, which converges the slowest. Figure 5 also confirms 
that ILSDEMO maintains its position as the fastest algorithm. Specifically, for DTLZ1, DTLZ3, and 
DTLZ7, ILSDEMO converges significantly faster than the other algorithms. However, for DTLZ2, IBEA 
converges only slightly slower than ILSDEMO. Similarly, for DTLZ4 and DTLZ6, DEMO converges 
with a minor lag behind ILSDEMO. Lastly, for DTLZ5, NSGAII performs almost on par with ILSDEMO. 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.7, Issue 5: 43-58, DOI: 10.25236/AJETS.2024.070507 

Published by Francis Academic Press, UK 
-52- 

 
Figure 1: The approximate PFs obtained by the four algorithms on ZDT1-4, and 6. 
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Figure 2: The approximate PFs obtained by the four algorithms on DTLZ1-4 

 
Figure 3: The approximate PFs obtained by the four algorithms on DTLZ5-7. 
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Figure 4: The convergence curves based on the HV* performance metric values obtained by the four 

algorithms on ZDT1-4, and 6. 

 
Figure 5: The convergence curves based on the HV* performance metric values obtained by the four 

algorithms on DTLZ1-7. 

The box-plots presented in Figures 6, 7, and 8 offer statistical evidence of the variations in the 
performance of the four algorithms across three performance metrics. Notably, ILSDEMO's overall 
performance remains highly competitive compared to the other three methods in both test sets. 
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Analysis of Figure 6 reveals that, apart from ZDT1, IBEA demonstrates inferior performance on the 
ZDT-series, attributed to the loss of extreme solutions. For ZDT1, ZDT2, ZDT3, and ZDT4, NSGAII 
outperforms DEMO, albeit with some outliers exceeding the upper quartile in ZDT3 and ZDT4. 
Intriguingly, DEMO exhibits inferior IGD and Spacing values compared to NSGAII, yet achieves 
superior HV* metrics. 

Examining Figure 7, it is evident that only IBEA demonstrates better spacing values than ILSDEMO 
on DTLZ2. For DTLZ1 and DTLZ2, IBEA outperforms NSGAII and DEMO, with the exception of 
inferior IGD values compared to DEMO on DTLZ2, where NSGAII performs the worst. DEMO exhibits 
superior performance over NSGAII and IBEA on DTLZ3 and DTLZ4. Specifically, NSGAII 
outperforms IBEA in terms of IGD on DTLZ3, but lags behind in spacing and HV* values. For DTLZ4, 
NSGAII demonstrates better IGD and Spacing values than IBEA, barring some outliers, but lags in HV* 
values. 

Figure 8 indicates that, for DTLZ5, IBEA performs the worst, while NSGAII outperforms DEMO. 
For DTLZ6, NSGAII performs the worst, except for its superior spacing values compared to IBEA. 
DEMO achieves similar performance to ILSDEMO, albeit with inferior spacing values. 

 
Figure 6: The box plots of the three metric values for ZDT1-4, and 6. 

ZDT2 ZDT2 ZDT2

ZDT3 ZDT3 ZDT3

ZDT4 ZDT4 ZDT4

ZDT6 ZDT6 ZDT6

ZDT1 ZDT1 ZDT1

ILSDEMO     NSGAII        IBEA           DEMO

H
V

* v
al

ue
s

.00022

.00024

.00026

.00028

.00030

.00032

.00034

.00036

ILSDEMO     NSGAII        IBEA           DEMO

IG
D

 v
al

ue
s

.00085

.00090

.00095

.00100

.00105

.00110

.00115

.00120

.00125

ILSDEMO     NSGAII        IBEA           DEMO

S
pa

ci
ng

  v
al

ue
s

0.0

.1

.2

.3

.4

.5

ILSDEMO     NSGAII        IBEA           DEMO

IG
D

 v
al

ue
s

.0008

.0010

.0012

.0014

.0016

.0018

.0020

.0022

.0024

.0026

.0028

.0030

ILSDEMO     NSGAII        IBEA           DEMO

S
pa

ci
ng

 V
al

ue
s

0.0

.1

.2

.3

.4

.5

.6

ILSDEMO     NSGAII        IBEA           DEMO

H
V

*  
va

lu
es

.00018

.00020

.00022

.00024

.00026

.00028

.00030

.00032

.00034

ILSDEMO     NSGAII        IBEA           DEMO

H
V

*  
va

lu
es

0.000

.005

.010

.015

.020

.025

ILSDEMO     NSGAII        IBEA           DEMO

IG
D

 v
al

ue
s

0.000

.002

.004

.006

.008

.010

.012

ILSDEMO     NSGAII        IBEA           DEMO

S
pa

ci
ng

 V
al

ue
s

.2

.4

.6

.8

1.0

1.2

1.4

ILSDEMO     NSGAII        IBEA           DEMO

H
V

*  
va

lu
es

0.00

.01

.02

.03

.04

.05

ILSDEMO     NSGAII        IBEA           DEMO

IG
D

 v
al

ue
s

0.00

.01

.02

.03

.04

.05

.06

.07

ILSDEMO     NSGAII        IBEA           DEMO

S
pa

ci
ng

 V
al

ue
s

0.0

.2

.4

.6

.8

1.0

1.2

ILSDEMO     NSGAII        IBEA           DEMO

H
V

*  
va

lu
es

.00010

.00015

.00020

.00025

.00030

.00035

ILSDEMO     NSGAII        IBEA           DEMO

IG
D

 v
al

ue
s

.00070

.00075

.00080

.00085

.00090

.00095

.00100

.00105

.00110

ILSDEMO     NSGAII        IBEA           DEMO

S
pa

ci
ng

 V
al

ue
s

0.0

.1

.2

.3

.4

.5

.6



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.7, Issue 5: 43-58, DOI: 10.25236/AJETS.2024.070507 

Published by Francis Academic Press, UK 
-56- 

 
Figure 7: The box plots of the three metric values for DTLZ1-4. 

 
Figure 8: The box plots of the three metric values for DTLZ5-7. 
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5. Conclusions  

The quality of non-dominated solutions is influenced by several factors, including the initial 
population, variation operators, and selection operator. This paper presents an efficient multi-objective 
evolutionary algorithm based on differential evolution. Multiple approaches from different perspectives 
are employed to enhance the algorithm's performance. Orthogonal design is utilized to generate a 
statistically robust population. Additionally, self-adaptive parameters and strategies are incorporated to 
automatically adjust parameters, enabling adaptability to varying problems and stages. The q-Gaussian 
mutation is leveraged to strengthen the local search capability in the greedy selection of differential 
evolution. Furthermore, the k-nearest neighbor rule is used to prune crowded individuals, maintaining a 
fixed-size archive population. To ensure uniform distribution of individuals in the parent population, an 
indicator-based selection method is incorporated to form a new parent population based on the existing 
parent and archive populations. In comparisons with NSGAII, IBEA, and DEMO on ZDT-series and 
DTLZ-series test instances, the proposed approach demonstrates superior convergence to the true PF 
with greater accuracy and uniformity. 
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