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Abstract:  A kernel function is introduced into the primal-dual interior point algorithm,which not 

only measures the distance between the iteration point and the center path,but also improves the 

computational complexity of the interior point algorithm. In this paper, we propose a primal-dual 

interior point method for linear optimization problems based on a new kernel function with an efective 

logarithmic barrier term. Complexity bounds are derived for the large update methods, respectively. 

We obtain the best-known complexity bounds for large updates given by Peng et al. improving the 

complexity results so far based on the logarithmic kernel function given by El Ghamietal. 
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1. Introduction 

In 1984, Karmarkar [2] proposed a new polynomial method for solving linear opti- mization problems. 

This method evolved into the interior-point algorithm, whose main idea is to avoid the complexity of 

boundary testing by iterating within the feasible region, thereby improving computational ciency. Peng 

et al. [4] proposed a class of self-regular functions, each of which satisfies exponential convexity. In the 

algorithm, these functions are used to construct a metric function and an original-dual interior-point 

algorithm based on such functions is designed, and the convergence bounds of the small-step and large- 

step correction interior-point algorithms are obtained. In 2001, Peng et al. [3]  proposed an interior-point 

algorithm based on a new non-logarithmic barrier function kernel. Such functions are quadratic and 

convex on their domain. They obtained the most famous com- plexity results for the large and small 

update methods. In 2004, Bai et al.[5]  proposed a kernel function with an exponential barrier term, and 

introduced the trigonometric barrier term kernel function for the first time. In 2008, El Ghami etal[6] 

proposed a kernel function with a logarithmic barrier term parameterization. This function was extended 

to the kernel function given by Roos et al.[7] . In the same year, Baietal. parameterized the barrier term 

of the kernel function that was not in the form of a logarithm, and extended it to the kernel function given 

by . In 2012, El Ghami et al. computed the complexity of the first kernel function with a trigonometric 

barrier term proposed by Bai et al.[5] for the interior-point algorithm. Since then, scholars have been 

studying kernel functions with trigonometric barrier terms to improve the complexity bound obtained by 

El Ghami et al. 

2. Linear optimization with primitive pairwise interior point algorithms 

2.1 Preliminaries 

Standard linear optimization problems:  

 0xbxAxcmin T  ,：                                                            (1) 

Where 𝐴 ∈ 𝑅𝑚∗𝑛  , the matrix A is row-full-ranked, b ∈ Rm , x,c ∈ Rn , Its dyadic form is 

0}. ≥ s c, = s +y A :y max{b  TT
                                           (2) 

where y ∈ Rm , s ∈ Rn , Solving (P) and (D) is equivalent to solving the following system of 

equations:  

Ax = b,x ≥ 0; AT y + s = c,s ≥ 0; xs = 0.                                             (3) 
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Replace the third equation in the above system of equations with the parametric equation xs =μe, 

Ax = b,x ≥ 0; AT y + s = c,s ≥ 0; xs =μ e.                                       (4) 

2.2 A framework for kernel function-based interior point algorithms 

This equation determines the unique search direction (△x,△y,△s). To facilitate the analysis, let 

s

sv
:d,

x

xv
:d,

xs
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                                                  (5)
 

The problem of the above equation can be written as 

𝐴𝑑̅𝑥 = 0; 𝐴𝑇̅̅ ̅𝛥𝑦 + 𝑑𝑠 = 0;  𝑑𝑥 + 𝑑𝑠 = −𝛻𝛹(𝑣)                                        (6) 

Where,
)x(diag:),v(diag:11

:  XVXAVA ，


 , the last equation in the above equation is called 

the scaled centering equation, which indicates that the sum of the scaled search directions ds and dx is 

equal to -▽Ψ(v). The steepest descent direction of Ψ(v),the steepest descent direction of Ψ(v). The vector 

dx belongs to the zero space of A, ds belongs to the row space of A, and ds and dx are orthogonal vectors. 

Therefore, ds and dx form an orthogonal decomposition of the function Ψ(v) in the direction of the 

steepest descent, which yields 

ds = dx = 0   ▽Ψ(v) = 0   v = e  Ψ(v) = 0.                                  (7) 

To simplify the problem, define 





n

k

kvsx
1

)();,(:)v(                                                 (8) 

In the analysis of the algorithm, we use a paradigm-based proximity measure, defining 

δ(v) : R  → R+ to be the proximity measure of the obstacle function Ψ(v), means that  

   sx dd 
2

1
v

2

1
:)v(                                              (9) 

The barrier function Ψ(v) is strictly convex, and obtains its minimum at v = e, which, combined with 

(2-5), gives 

Ψ(v) = 0   v = e ▽Ψ(v) =0   δ(v) =0. For ease of description later, we define 

 𝑣̃ ≔ 𝑚𝑖𝑛(𝑣) , 𝛿 ≔ 𝛿(𝑣).                                             (10 ) 

3. Parameterized log-kernel functions and obstacle function properties 

3.1 The nature of the new kernel function 

In order to obtain the complexity analysis of the kernel function inner point algorithm, we study the 

properties of the new kernel function and the two inverse functions related to it. 

We define a new function, the 

2u,
4-u4

1u
-t

1-u

1
logt

2

1
-t

4

3
)t( 1u-2

* 


  3


                                   (11)

 

The first three derivatives of this function with respect to t are given as follows. 

𝜓∗
′(𝑡) =

3

2
𝑡 −

1

2𝑡
− 𝑡−𝑢,                                                                  (12) 

𝜓∗
′′(𝑡) =

3

2
+

1

2𝑡2
+ 𝑢𝑡−𝑢−1,                                                                           (13) 
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                             𝜓∗
′′′(𝑡) = −

1

𝑡3 − 𝑢(𝑢 + 1)𝑡−𝑢−2.                                        (14) 

Obviously it satisfies 

          𝜓∗
′(1) = 𝜓∗(1) = 0; 𝜓∗

′′(𝑡) > 0, 𝑡 > 0; 𝑙𝑖𝑚
𝑡→0+

𝜓∗ (𝑡) = 𝑙𝑖𝑚
𝑡→+∞

𝜓∗ (𝑡) =+∞       (15)
 

This function is a kernel function. Properties related to the kernel function 𝜓∗(𝑡) and its derivative 

are given below. 𝜓∗(𝑡) is quadratically diferentiable, and by the definition of the kernel function, it 

follows that it is completely determined by its second-order derivatives:  

         
dydxyt

t x

  


1 1
)()( 

                                               (16)
 

Lemma 3.1.3. For quadratically differentiable univariate kernel functions     RR：t , have 

0t,)]t([
2

1
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4
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                                   (17)

 

Prove : we know that when y > 0, we have  
2

3
y*   , We have 
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there is
2

3
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Properties of two inverse functions related to the kernel function  t* , which play an important 

role in the later complexity analysis, are given below. Lemma Let *  : [0, ∞) → (0, 1] be the inverse 

function of -
1

2
𝜓∗

′(𝑡) on the interval (0, 1], then 
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Prove : Let  t
2

1
-z *  ,  t ∈ (0, 1]. By definition: *  : *  (z) = t,   z ∈ [0, +∞). When t ∈ (0, 

1], 
4
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Lemma Let *  : [0, ∞) → [1, ∞) be the inverse function of  t*  on the interval [1, ∞), then 

2,1)( 


  us
3

4
ss

u2

2
1 

                                       
 (23)

 

Prove :  Let  ts * ,  t > 1. By definition: 
*

  :   ts*  ,  s ∈ [0, +∞).

 𝑠 = (𝑡 − 1
), that is 

s
3

4
st   1)(
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We have , 
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3.2 Complexity analysis of algorithms 

At the beginning of any external iteration of the algorithm and before μ is updated, we have 

   v*  . As a result of the μ update, when 0 < θ < 1, the vector u is divided by a factor √1 − 𝜃. This 

usually results in an increase in the value of  v* . Subsequent internal iterations are performed to 

return the value of  v* to the case of    v*  . Therefore, the maximum value of  v* occurs 

after the parameter μ has been updated and before the internal iteration begins. 

3.2.1 Growth behavior of the barrier function  

Combined with the definition of the barrier function,  k* v  is the barrier function determined by 

the kernel function  k* v  
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Lemma 3.2.1. [5] If  Rv ,  
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n
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where σ : [0, ∞) → [1, ∞) is the inverse function of the kernel function  t* . 

Lemma 3.2.2. If    v*  , when ∀v ∈
R  , 

v
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where 𝜏 is the critical parameter, and the range of the barrier correction parameter is 0 < θ < 1. 

Prove : When t ≥ 1, u ≥ 2, according to equation (29) we have 

1
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According to Lemma 3.2.1, we can get 

 t*  4

3



Academic Journal of Mathematical Sciences 

ISSN 2616-5805 Vol. 6, Issue 1: 8-14, DOI: 10.25236/AJMS.2025.060102 

Published by Francis Academic Press, UK 

-12- 







 

 
 ]

n

)v(
[n)v( 

                                                (30)

 

Based on the above two inequalities, we can get 
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Combining with Lemma 3.1.5, if    v* , we get 
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By taking this into the equation (32), we get 
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During the iteration of the algorithm *0  is an upper bound on   v* . 

3.2.2 Choice of step size and descent of the barrier function 

In this section, we compute the default step size   and the reduction of the barrier function at each 

iteration.Lemma 3.2.3. From the (2)equation )v(  ,we can get 
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prove: The first inequality by Lemma 3.1.3 shows that 
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3.2.3 Complexity analysis  

Based on the above analysis to obtain the upper bound of the barrier function and the decrease of the 

barrier function in each inner iteration, the polynomial complexity of the parametric kernel function 

interior point algorithm for solving the optimization problem is given below.[8] 

When solving an optimization problem using a parametric kernel function interior point algorithm, 

for the large step update method, the algorithm requires at most stops. 

Prove :  Let us first consider the total number of internal iterations, i.e., how many internal 

iterations it takes to return to the case of  )(v  ,  Assuming that when the algorithm re-satisfies 

 )(v  after K internal iterations, let Ψ*k(v) be the obstacle function after k internal iterations, 

where k = 1, 2, · · · ,K, then the total number of internal iterations after the correction of   is denoted 
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by K, and the decrease of the obstacle function in the internal iterations is k. The decrease in the barrier 

function in the internal iterations is:  
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We can find suitable values for   > 0 and     ∈ (0, 1]. 
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by multiplying the number of external iter- ations by the number of internal iterations, we get the 

upper bound of the total number of iterations, namely :  
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For the big-step update method, T = O(n),θ = Θ(1), O denotes infinitesimals of the same order, so the 

algorithm needs to iterate ）（


n
logun u2

1u

O times to find the optimal solution to the problem.[9] 

4. Conclusion 

Through the study of the interior point algorithm for parameterized logarithmic kernel functions, we 

have successfully proposed and validated an efficient and stable solution method. This method not only 

enriches the theoretical system of interior point algorithms, but also provides strong support for practical 

applications. The experimental results show that the algorithm performs well in handling large-scale 

optimization problems and has broad application prospects. In the future, we will continue to optimize 

algorithm performance, explore its applications in more fields, and make greater contributions to 

promoting the development of optimization technology. At the same time, we also look forward to 

collaborating with more researchers to jointly promote progress in this field. 
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