Academic Journal of Materials & Chemistry, 2026, 7(1); doi: 10.25236/AJMC.2026.070103.
Junyan Dou1, Lan Ding1, Fei Wang1, Fang Wang2
1School of Integrated Circuits, Wuxi Vocational College of Science and Technology, Wuxi, 214028, Jiangsu, China
2School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi, 214028, Jiangsu, China
The depolymerization technology of polyethylene terephthalate (PET) is crucial for degrading PET into the monomer bis (2-hydroxyethyl) terephthalate (BHET). Against the backdrop of widespread plastic usage and the inability of discarded or landfilled plastics to undergo microbial degradation, technologies enabling the conversion of waste PET into new qualified PET products for circular reuse have become particularly important and urgent. This paper systematically elaborates on the concept, physical, and chemical properties of room-temperature ionic liquids (RTILs), as well as their unique advantages as green reaction media. It further discusses PET synthesis, properties, and the recent research status, breakthroughs, and technical barriers in PET alcoholysis depolymerization using RTILs.
Iionic liquid; Polyethylene terephthalate; Depolymerization; Recycling
Junyan Dou, Lan Ding, Fei Wang, Fang Wang. Preparation, Depolymerization, and Recycling of Polyethylene Terephthalate in Room-Temperature Ionic Liquids. Academic Journal of Materials & Chemistry (2026), Vol. 7, Issue 1: 13-17. https://doi.org/10.25236/AJMC.2026.070103.
[1] AliReza Rahimi, Jeannette M. García. Chemical recycling of waste plastics for new materials production [J]. Nat. Rev. Chem., 2017, 1: 0046.
[2] Wagner Silva, Marcileia Zanatta, Ana Sofia Ferreira, Marta C. Corvo, Eurico J. Cabrita. Revisting Ionic Liquid Structure-Property Relationship: A Critical Analysis [J]. Int. J. Mol. Sci., 2020, 21(20): 7745.
[3] Junyan Dou, Zhengping Liu, Khalid Mahmood, Yuntao Zhao. Synthesis of Poly(ethylene terephthalate) in benzyl imidazolium ionic liquids [J]. Polym. Int., 2012, 61:1470-1476.
[4] Junyan Dou, Zhengping Liu. A Simple and Efficient Synthetic Method for Poly(ethylene terephthalate): Phenylalkyl Pyrrolidium Ionic Liquid as Polycondensation Medium [J]. Green Chem., 2012, 14:2305-2313.
[5] Clarissa C. Westover, Timothy E. Long. Envisioning a BHET Economy: Adding Value to PET Waste [J]. Sustain. Chem., 2023, 4:363-393.
[6] Robbie A. Clark, Michael P. Shaver. Depolymerization within a Circular Plastics System [J]. Chem. Rev., 2024, 124(5): 2617-2650.
[7] Mengjin Wang, Yaoqin Li, Lin Zheng, Tao Hu, Ming Yan, Chonggang Wu. Recycling and depolymerisation of poly(ethylene terephthalate): a review [J]. Polym. Chem., 2024, 15:585-608.
[8] Ren-Xuan Yang,Yen-Tsz Bieh, Celine H. Chen, Chang-Yen Hsu, Yuki Kato, Hideki Yamamoto, Chia-Kuang Tsung, Kevin C.-W. Wu. Heterogeneous Metal Azolate Framework-6 (MAF-6) Catalysts with High Zinc Density for Enhanced Polyethylene Terephthalate (PET) Conversion [J]. ACS Sustainable Chem. Eng., 2021, 9(19):6541-6550.
[9] Ge Yang, Hao Wu, Ke Huang, Yukun Ma, Qi Chen, Yun Chen, Shanshan Lin, Hailing Guo, Zhibo Li. The Recyclable Dual-Functional Zeolite Nanocrystals Promoting the High Efficiency Glycolysis of PET [J]. J. Polym. Environ., 2024, 32:5071-5085.
[10] Somayeh Mohammadi, Martin G. Bouldo, Mojtaba Enayati. FeCl3-Doped Cobalt Ferrite as an Efficient Magnetic Catalyst for PET Glycolysis Depolymerization [J]. J. Polym. Environ., 2024, 32:5738-5749.
[11] Somayeh Mohammadi, Martin G. Bouldo, Mojtaba Enayati. Controlled Glycolysis of Poly(ethylene terephthalate) to Oligomers under Microwave Irradiation Using Antimony(Ⅲ) Oxide [J]. ACS Appl. Polym. Mater., 2023, 5(8):6574-6784.
[12] Lei Wang, Gareth A. Nelson, Jeni Toland, John D. Holbrey. Glycolysis of PET Using 1,3-Dimethyl-imidazolium-2-Carboxylate as an Organocatalyst [J]. ACS Sustainable Chem. Eng., 2020, 8:13362-13368.
[13] Fusheng Liu, Xiao Cui, Shitao Yu, Zhuo Li, Xiaoping Ge. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst [J]. J. Appl. Polym. Sci., 2009, 114(6): 3561-3565.
[14] Weisheng Yang, Rui Liu, Chang Li, Yang Song, Chaoquan Hu. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid [J]. Waste Manage., 2021, 135:267-274.
[15] Yachan Liu, Xiaoqian Yao, Haoyu Yao, Qing Zhou, Jiayu Xin, Xingmei Lu, Suojiang Zhang. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids [J]. Green Chem., 2020, 22:3122-3131.
[16] Salvatore Marullo, Carla Rizzo, Nadka T. Dintcheva, Francesca D’Anna. Amino Acid-Based Cholinium Ionic Liquids as Sustainable Catalysts for PET Depolymerization [J]. ACS Sustainable Chem. Eng., 2021, 9:15157-15165.
[17] Haoyu Yao, Xingmei Lu, Lin Ji, Xin Tan, Suojiang Zhang. Multiple Hydrogen Bonds Promote the Nonmetallic Degradation Process of Polyethylene Terephthalate with an Amino Acid Ionic Liquid Catalyst [J]. Ind. Eng. Chem. Res., 2021, 60:4180-4188.
[18] Diana Bura, Lorenzo Pedrini, Cristina Trujillo, Stephen J. Connon. Cholinium-based ionic liquid catalysts for polyethylene terephthalate glycolysis: understanding the role of solvent and a reappraisal of the cation contribution [J]. RSC Sustain., 2023, 1:2197-2201.
[19] Gaurav Kumar, Kishant Kumar, Anand Bharti. Energy and Environmental Metrics-Based Comparison of Ionic Liquids/Deep Eutectic Solvents-Assisted Chemical Recycling of Waste Poly(ethylene terephthalate) [J]. Ind. Eng. Chem. Res., 2024, 63:6024-6046.
[20] Lorenzo Pedrini, Chiara Zappelli, Stephen J. Connon. Ionic Liquid Catalysts for Poly(ethylene terephthalate) Glycolysis: Use of Structure Activity Relationships to Combine Activity with Biodegradability [J]. ACS Sustainable Chem. Eng., 2025, 13:1424-1430.