Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2026, 7(1); doi: 10.25236/AJMC.2026.070102.

Optimization of Aluminum Alloy Semi-solid Die Casting Process and Enhancement of Fatigue Performance

Author(s)

Zhizhi Tang

Corresponding Author:
Zhizhi Tang
Affiliation(s)

Xihua University, Chengdu, Sichuan, 610039, China

Abstract

This study optimizes key parameters of semi-solid die casting (SSDC) for aluminum alloys to boost cast components’ fatigue performance. SSDC outperforms traditional die casting in reducing porosity and refining microstructures, yet its fatigue properties depend on precise control of interdependent parameters. The research examines how slurry temperature, injection velocity, die temperature and solid fraction affect A356 aluminum alloy’s microstructure, defects and mechanical properties via a comprehensive experiment matrix and relevant tests. Results show a tailored parameter combination forms uniform globular α-Al phase with minimal porosity, raising the 10⁷-cycle fatigue strength by 65% versus conventional die casting. The findings offer an industrial pathway to produce high-integrity aluminum castings with superior durability for fatigue-critical automotive and aerospace applications.

Keywords

Semi-solid die casting, Aluminum alloy, Process optimization, Fatigue performance, Microstructure

Cite This Paper

Zhizhi Tang. Optimization of Aluminum Alloy Semi-solid Die Casting Process and Enhancement of Fatigue Performance. Academic Journal of Materials & Chemistry (2026), Vol. 7, Issue 1: 7-12. https://doi.org/10.25236/AJMC.2026.070102.

References

[1] Zheng C Q, Simard A. Optimization of casting parameters on an improved AA6061 aluminum alloy for semi-solid die casting[R]. SAE Technical Paper, 2010.

[2] Ragab K A, Bouaicha A, Bouazara M. Optimization of casting design parameters on fabrication of reliable semi-solid aluminum suspension control arm[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4450-4461.

[3] Bouazara M, Bouaicha A, Ragab K A. Fatigue characteristics and quality index of A357 type semi-solid aluminum castings used for automotive application[J]. Journal of Materials Engineering and Performance, 2015, 24(8): 3084-3092.

[4] Ragab K A, Bouazara M, Bouaicha A, et al. Microstructural and mechanical features of aluminium semi-solid alloys made by rheocasting technique[J]. Materials Science and Technology, 2017, 33(6): 646-655.

[5] Singh D P, Dwivedi V K, Agarwal M. Optimizing processing parameters for semi-solid casting: a comprehensive review[J]. Materials Physics and Mechanics, 2024, 52(2): 1-10.

[6] Shang S Z, Wang J J, Lu G M, et al. Study on the semi-solid thixo-diecasting process of aluminum alloys and die design[J]. Solid State Phenomena, 2013, 192: 460-465.

[7] Pola A, Tocci M, Kapranos P. Microstructure and properties of semi-solid aluminum alloys: a literature review[J]. Metals, 2018, 8(3): 181.

[8] Jarfors A E W. A comparison between semisolid casting methods for aluminium alloys[J]. Metals, 2020, 10(10): 1368.

[9] Ragab K A, Bouaicha A, Bouazara M. Development of fatigue analytical model of automotive dynamic parts made of semi-solid aluminum alloys[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1226-1232.

[10] Feng J, Liu Z, Li D, et al. Evolution of segregation, microstructure and mechanical properties of a semisolid die casting Al–6Si–3Cu–0.4 Mg alloy[J]. International Journal of Lightweight Materials and Manufacture, 2023, 6(2): 245-253.

[11] Lang Z, Wang F, Wang W, et al. Numerical simulation and experimental study on semi-solid forming process of 319s aluminum alloy test bar[J]. International Journal of Metalcasting, 2023, 17(1): 481-498.

[12] Attia M, Ragab K, Bouazara M, et al. Influence of Thermal Treatment and Design Parameters on the Fatigue Life of Automotive Control Arm Fabricated from A357 Semi-Solid Alloy[M]//Light Metals 2020. Cham: Springer International Publishing, 2020: 289-296.