Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2025, 7(1); doi: 10.25236/IJFM.2025.070115.

Mitochondrial Pathways in Cisplatin Resistance: A New Perspective on Tumor Therapy Challenges

Author(s)

Mengqing Wang, Xiaoqi Yang

Corresponding Author:
Xiaoqi Yang
Affiliation(s)

1Shaanxi University of Chinese Medicine, Xianyang, China

2Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, China

Abstract

Despite its high toxicity and the frequent recurrence of patients due to drug resistance, cisplatin remains one of the most effective and widely used chemotherapeutic agents for treating various solid tumors. Therefore, avoiding cisplatin resistance remains a primary goal in clinical treatment. Increasing evidence highlights the importance of mitochondria in cancer initiation, progression, metastasis, and chemotherapy resistance. This review summarizes current understandings of the role of mitochondria in cisplatin resistance and recent developments in this field, including mitochondrial DNA alterations, increased mitochondrial reactive oxygen species (ROS), and changes in mitochondrial dynamics. It aims to provide new insights into the mechanisms of cisplatin resistance and identify novel therapeutic targets for overcoming cisplatin resistance in tumors.  

Keywords

Mitochondria, Cisplatin Resistance, Tumors

Cite This Paper

Mengqing Wang, Xiaoqi Yang. Mitochondrial Pathways in Cisplatin Resistance: A New Perspective on Tumor Therapy Challenges. International Journal of Frontiers in Medicine (2025), Vol. 7, Issue 1: 91-96. https://doi.org/10.25236/IJFM.2025.070115.

References

[1] Ghosh S. Cisplatin: The first metal based anticancer drug[J/OL]. Bioorganic Chemistry, 2019, 88: 102925. 

[2] Cohen S M, Lippard S J. Cisplatin: from DNA damage to cancer chemotherapy[J/OL]. Progress in Nucleic Acid Research and Molecular Biology, 2001, 67: 93-130. 

[3] Dasari S, Tchounwou P B. Cisplatin in cancer therapy: molecular mechanisms of action[J/OL]. European Journal of Pharmacology, 2014, 740: 364-378. 

[4] Galluzzi L, Vitale I, Michels J, et al. Systems biology of cisplatin resistance: past, present and future[J/OL]. Cell Death & Disease, 2014, 5(5): e1257. 

[5] Bustos G, Cruz P, Lovy A, et al. Endoplasmic Reticulum-Mitochondria Calcium Communication and the Regulation of Mitochondrial Metabolism in Cancer: A Novel Potential Target[J/OL]. Frontiers in Oncology, 2017, 7: 199. 

[6] Warburg O. On the origin of cancer cells[J/OL]. Science (New York, N.Y.), 1956, 123(3191): 309-314. 

[7] Jia S, Wang R, Wu K, et al. Elucidation of the Mechanism of Action for Metal Based Anticancer Drugs by Mass Spectrometry-Based Quantitative Proteomics[J/OL]. Molecules (Basel, Switzerland), 2019, 24(3): 581. 

[8] Patel T H, Norman L, Chang S, et al. European mtDNA Variants Are Associated With Differential Responses to Cisplatin, an Anticancer Drug: Implications for Drug Resistance and Side Effects[J/OL]. Frontiers in Oncology, 2019, 9: 640.

[9] Yang Z, Schumaker L M, Egorin M J, et al. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis[J/OL]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2006, 12(19): 5817-5825. 

[10] Podratz J L, Knight A M, Ta L E, et al. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons[J/OL]. Neurobiology of Disease, 2011, 41(3): 661-668. 

[11] Hao Y, Zhou Z, Liu R, et al. Mitochondria-localized MBD2c facilitates mtDNA transcription and drug resistance[J/OL]. Nature Chemical Biology, 2024. 

[12] Hamaya S, Oura K, Morishita A, et al. Cisplatin in Liver Cancer Therapy[J/OL]. International Journal of Molecular Sciences, 2023, 24(13): 10858. 

[13] Wangpaichitr M, Wu C, Li Y Y, et al. Exploiting ROS and metabolic differences to kill cisplatin resistant lung cancer[J/OL]. Oncotarget, 2017, 8(30): 49275-49292.  

[14] Cruz-Bermúdez A, Laza-Briviesca R, Vicente-Blanco R J, et al. Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition[J/OL]. Free Radical Biology and Medicine, 2019, 135: 167-181. 

[15] Sun Y, Liu W, Zhao Q, et al. Down-Regulating the Expression of miRNA-21 Inhibits the Glucose Metabolism of A549/DDP Cells and Promotes Cell Death Through the PI3K/AKT/mTOR/HIF-1α Pathway[J/OL]. Frontiers in Oncology, 2021, 11: 653596.

[16] Kim H J, Lee J H, Kim S J, et al. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity[J/OL]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2010, 30(11): 3933-3946. 

[17] Wang Y, Liu H H, Cao Y T, et al. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy[J/OL]. Frontiers in Cell and Developmental Biology, 2020, 8: 413. 

[18] Luo C, Widlund H R, Puigserver P. PGC-1 Coactivators: Shepherding the Mitochondrial Biogenesis of Tumors[J/OL]. Trends in cancer, 2016, 2(10): 619-631. 

[19] Choi Y M, Kim H K, Shim W, et al. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation[J/OL]. PLoS ONE, 2015, 10(8): e0135083. 

[20] Yan J, Xu F, Zhou D, et al. Metabolic reprogramming of three major nutrients in platinum-resistant ovarian cancer[J/OL]. Frontiers in Oncology, 2023, 13: 1231460. 

[21] Snaebjornsson M T, Janaki-Raman S, Schulze A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer[J/OL]. Cell Metabolism, 2020, 31(1): 62-76. 

[22] Tan Y. Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells[J]. Nature Communications, 2022.

[23] Wang Y, Cai L, Li H, et al. Overcoming Cancer Resistance to Platinum Drugs by Inhibiting Cholesterol Metabolism[J/OL]. Angewandte Chemie (International Ed. in English), 2023, 62(42): e202309043. 

[24] Cho Y E, Singh T S K, Lee H C, et al. In-depth Identification of Pathways Related to Cisplatin-induced Hepatotoxicity through an Integrative Method Based on an Informatics-assisted Label-free Protein Quantitation and Microarray Gene Expression Approach[J/OL]. Molecular & Cellular Proteomics : MCP, 2012, 11(1): M111.010884. 

[25] Park J H, Pyun W Y, Park H W. Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets[J/OL]. Cells, 2020, 9(10): 2308. 

[26] Han B, Sun Y, Zhang X, et al. Exogenous proline enhances susceptibility of NSCLC to cisplatin via metabolic reprogramming and PLK1-mediated cell cycle arrest[J/OL]. Frontiers in Pharmacology, 2022, 13: 942261. 

[27] Han X J, Shi S L, Wei Y F, et al. Involvement of mitochondrial dynamics in the antineoplastic activity of cisplatin in murine leukemia L1210 cells[J/OL]. Oncology Reports, 2017, 38(2): 985-992.

[28]Kong B, Han C Y, Kim S I, et al. Prohibitin 1 interacts with p53 in the regulation of mitochondrial dynamics and chemoresistance in gynecologic cancers[J/OL]. Journal of Ovarian Research, 2022, 15(1): 70. 

[29] Meng Y, Qiu L, Zeng X, et al. Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy[J/OL]. Signal Transduction and Targeted Therapy, 2022, 7: 388. 

[30] Xiao Y Y, Xiao J X, Wang X Y, et al. Metformin-induced AMPK activation promotes cisplatin resistance through PINK1/Parkin dependent mitophagy in gastric cancer[J/OL]. Frontiers in Oncology, 2022, 12: 956190. 

[31] Chen W, Yang K B, Zhang Y Z, et al. Synthetic lethality of combined ULK1 defection and p53 restoration induce pyroptosis by directly upregulating GSDME transcription and cleavage activation through ROS/NLRP3 signaling[J/OL]. Journal of Experimental & Clinical Cancer Research : CR, 2024, 43: 248. 

[32] Low H B, Wong Z L, Wu B, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death[J/OL]. Nature Communications, 2021, 12: 2284. 

[33] Xu T, Yang Y, Chen Z, et al. TNFAIP2 confers cisplatin resistance in head and neck squamous cell carcinoma via KEAP1/NRF2 signaling[J/OL]. Journal of Experimental & Clinical Cancer Research : CR, 2023, 42: 190. 

[34] Tong T, Qin X, Jiang Y, et al. A novel CREB5/TOP1MT axis confers cisplatin resistance through inhibiting mitochondrial apoptosis in head and neck squamous cell carcinoma[J/OL]. BMC Medicine, 2022, 20: 231.

[35] Liu Z, Sadler P J. Organoiridium Complexes: Anticancer Agents and Catalysts[J/OL]. Accounts of Chemical Research, 2014, 47(4): 1174-1185. 

[36] Zheng P, Zhou C, Lu L, et al. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy[J/OL]. Journal of Experimental & Clinical Cancer Research : CR, 2022, 41: 271. 

[37] Ling X, Tu J, Wang J, et al. Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy[J/OL]. ACS nano, 2019, 13(1): 357-370. 

[38] Lu H, Tong W, Jiang M, et al. Mitochondria-Targeted Multifunctional Nanoprodrugs by Inhibiting Metabolic Reprogramming for Combating Cisplatin-Resistant Lung Cancer[J/OL]. ACS nano, 2024, 18(32): 21156-21170. 

[39] Zhang W, Du X F, Liu B, et al. Engineering Supramolecular Nanomedicine for Targeted Near Infrared-triggered Mitochondrial Dysfunction to Potentiate Cisplatin for Efficient Chemophototherapy [J/OL]. ACS nano, 2022, 16(1): 1421-1435.