International Journal of Frontiers in Medicine, 2025, 7(1); doi: 10.25236/IJFM.2025.070106.
Wen Ji1, Wu Tao1, Gao Yuhao1, Liu Hualv1, Han Pengfei2, Xu Yunfeng3
1Graduate School of Changzhi Medical College, Changzhi, Shanxi, 046000, China
2Affiliated Heping Hospital of Changzhi Medical College, Changzhi, Shanxi, 046000, China
3Changzhi Yunfeng Hospital, Changzhi, Shanxi, 046000, China
Research in Spinal Biomechanics has gained increasing attention. This study aims to investigate the current status and trends in this field globally. Publications on Spinal Biomechanics from January 1, 2005, to November 1, 2024, were retrieved from the Web of Science - Science Citation Index Expanded. Bibliometric methods were used to analyze the source data, and VOSviewer version 1.6.19 software was employed for co-authorship, co-occurrence, bibliographic coupling, and co-citation analyses. The overall trends in Spinal Biomechanics research in recent years were also analyzed. A total of 3,812 articles were identified. The number of global research and publications on Spinal Biomechanics has increased annually. The United States contributes the most to global research in this field, with the highest number of citations and the highest h-index. The Journal of Biomechanics and Clinical Biomechanics have the highest publication rates. The University of British Columbia, the University of Montreal, the University of Pittsburgh, and St. Joseph's Hospital are the top four contributing institutions. Research can be classified into four categories: sports biomechanics, tissue engineering, clinical research, and mechanism research. Clinical research is predicted to be the next hot topic in this field. Based on current global research trends, the number of publications related to Spinal Biomechanics is expected to continue increasing. The United States is currently the largest contributor to research in this field. Most research efforts will focus on clinical studies of Spinal Biomechanics, which may be the next hotspot in this research area.
Spinal Biomechanics; Global trends; Bibliometrics; Visual analysis
Wen Ji, Wu Tao, Gao Yuhao, Liu Hualv, Han Pengfei, Xu Yunfeng. Global Research Trends in Spinal Biomechanics: A Bibliometric and Visual Analysis. International Journal of Frontiers in Medicine (2025), Vol. 7, Issue 1: 32-41. https://doi.org/10.25236/IJFM.2025.070106.
[1] Izzo, R.; Guarnieri, G.; Guglielmi, G.; Muto, M. Biomechanics of the Spine. Part I: Spinal Stability. Eur. J. Radiol. 2013, 82 (1), 118–126. https://doi.org/10.1016/j.ejrad.2012.07.024.
[2] Izzo, R.; Guarnieri, G.; Guglielmi, G.; Muto, M. Biomechanics of the Spine. Part II: Spinal Instability. Eur. J. Radiol. 2013, 82 (1), 127–138. https://doi.org/10.1016/j.ejrad.2012.07.023.
[3] Kowalski, R.; Ferrara, L.; Benzel, E. Biomechanics of the Spine. Neurosurg. Q. 2005, 15 (1), 42–59. https://doi.org/10.1097/01.wnq.0000152406.39871.8e.
[4] Adams, M.; Dolan, P. Spine Biomechanics. J. Biomech. 2005, 38 (10), 1972–1983. https://doi.org/10.1016/j.jbiomech.2005.03.028.
[5] Shah, A.; Lemans, J.; Zavatsky, J.; Agarwal, A.; Kruyt, M.; Matsumoto, K.; Serhan, H.; Agarwal, A.; Goel, V. Spinal Balance/Alignment-Clinical Relevance and Biomechanics. J. Biomech. Eng.-Trans. ASME 2019, 141 (7). https://doi.org/10.1115/1.4043650.
[6] Yang, K.; Pei, L.; Wen, K.; Zhou, S.; Tao, L. Investigating Research Hotspots and Publication Trends of Spinal Stenosis: A Bibliometric Analysis During 2000–2018. Front. Med. 2021, 8, 556022. https://doi.org/10.3389/fmed.2021.556022.
[7] Wang, R.; Wu, Z. Recent Advancement in Finite Element Analysis of Spinal Interbody Cages: A Review. Front. Bioeng. Biotechnol. 2023, 11. https://doi.org/10.3389/fbioe.2023.1041973.
[8] Guan, W.; Sun, Y.; Qi, X.; Hu, Y.; Duan, C.; Tao, H.; Yang, X. Spinal Biomechanics Modeling and Finite Element Analysis of Surgical Instrument Interaction. Comput. Assist. Surg. 2019, 24, 151–159. https://doi.org/10.1080/24699322.2018.1560086.
[9] Lin, H.; Pan, Y.; Liu, C.; Huang, L.; Huang, C.; Chen, C. Biomechanical Comparison of the K-ROD and Dynesys Dynamic Spinal Fixator Systems - A Finite Element Analysis. Biomed. Mater. Eng. 2013, 23 (6), 495–505. https://doi.org/10.3233/BME-130766.
[10] Mao, X.; Guo, L.; Fu, P.; Xiang, C. The Status and Trends of Coronavirus Research: A Global Bibliometric and Visualized Analysis. Medicine (Baltimore) 2020, 99 (22), e20137. https://doi.org/10.1097/MD.0000000000020137.
[11] Whyne, C. Biomechanics of Metastatic Disease in the Vertebral Column. Neurol. Res. 2014, 36 (6), 493–501. https://doi.org/10.1179/1743132814Y.0000000362.
[12] Ivanov, D.; Hominets, V.; Kirillova, I.; Kossovich, L.; Kudyashev, A.; Teremshonok, A.; IOP. Biomechanics of Compensatory Mechanisms in Spinal-Pelvic Complex; 2018; Vol. 991. https://doi.org/10.1088/1742-6596/991/1/012036.
[13] Mao, X.; Chen, C.; Wang, B.; Hou, J.; Xiang, C. A Global Bibliometric and Visualized Analysis in the Status and Trends of Subchondral Bone Research. Medicine (Baltimore) 2020, 99 (22), e20406. https://doi.org/10.1097/MD.0000000000020406.
[14] Chang, T.; Cheng, C.; Wang, C.; Chen, H.; Chang, J. A New Multi-Direction Tester for Evaluation of the Spinal Biomechanics. J. Med. Biol. Eng. 2009, 29 (1), 7–13.
[15] Wu, J.; Niu, Z.; Li, X.; Huang, L.; Nielsen, P. S.; Liu, X. Understanding Multi-Scale Spatiotemporal Energy Consumption Data: A Visual Analysis Approach. Energy 2023, 263, 125939. https://doi.org/10.1016/j.energy.2022.125939.
[16] Elliott, N.; Bertram, C.; Martin, B.; Brodbelt, A. Syringomyelia: A Review of the Biomechanics. J. FLUIDS Struct. 2013, 40, 1–24. https://doi.org/10.1016/j.jfluidstructs.2013.01.010.
[17] Chen, R.; Jiang, Y.; Lu, L.; Wang, P.; Huang, D.; Wang, J.; Liu, Z.; Qin, S.; Yin, F. Bibliometric Analysis of Research Trends in Stem Cell Therapy for Knee Osteoarthritis over the Period 2001–2021. Front. Cell Dev. Biol. 2022, 10, 996273. https://doi.org/10.3389/fcell.2022.996273.
[18] Maikos, J.; Qian, Z.; Metaxas, D.; Shreiber, D. Finite Element Analysis of Spinal Cord Injury in the Rat. J. NEUROTRAUMA 2008, 25 (7), 795–816. https://doi.org/10.1089/neu.2007.0423.
[19] Nagatomi, J.; Getzenberg, R.; Torimoto, K.; Chancellor, A.; Sacks, M. Relationship between Tissue Composition and Biomechanics of the Urinary Bladder: Effects of Spinal Cord Injury on Bladder Tissue; Schreiner, S., Cezeaux, J., Muratore, D., Eds.; 2004; pp 162–163.
[20] REZAIAN, S.; GHISTA, D. CLINICAL BIOMECHANICS OF SPINAL FIXATION - ANTERIOR, POSTERIOR, AND LATERAL. IEEE Eng. Med. Biol. Mag. 1994, 13 (4), 525–531. https://doi.org/10.1109/51.310994.
[21] Cady-McCrea, C. I.; Lawlor, M. C.; Rodenhouse, T. F.; Puvanesarajah, V.; Mesfin, A. The Rowing Spine: A Review of Biomechanics, Injury, and Treatment. WORLD Neurosurg. 2024, 187, 156–161. https://doi.org/10.1016/j.wnEu.2024.04.032.
[22] Frost, H. An Overview: Spinal Tissue Vital Biomechanics for Clinicians; Takahashi, H., Ed.; 1995; pp 95–126.
[23] Nordin, A. D.; Rymer, W. Z.; Biewener, A. A.; Schwartz, A. B.; Chen, D.; Horak, F. B. Biomechanics and Neural Control of Movement, 20 Years Later: What Have We Learned and What Has Changed? J. NEUROENGINEERING Rehabil. 2017, 14. https://doi.org/10.1186/s12984-017-0298-y.